Created
November 19, 2017 21:29
-
-
Save mpampols/dcfb01721dad6e3861a213889f9d1de4 to your computer and use it in GitHub Desktop.
Solución al reto 4 de la Semic Challenge del grupo "josep_pon" en la HackEPS 2017
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import heapq | |
import fileinput | |
class Node: | |
def __init__(self, state, parent=None, action=None, cost=0): | |
self.state = state | |
self.parent = parent | |
self.action = action | |
self.cost = cost | |
def get_path_action(self): | |
path_actions = [] | |
node = self | |
while node.parent is not None: | |
path_actions.append(node.action) | |
node = node.parent | |
path_actions.reverse() | |
return path_actions | |
def __str__(self): | |
return "-- Node {0} --\n Parent: {1}\n Action: {2}\n Cost: {3}" \ | |
.format(self.state, self.parent, self.action, self.cost) | |
def __lt__(self, other): | |
return self.cost < other.cost | |
class MazeSolver(object): | |
def __init__(self, maze_rows): | |
self.maze_rows = maze_rows | |
self.start, self.end = self._get_start_end() | |
self.FRINGE = 0 | |
self.EXPANDED = 1 | |
self.path = None | |
def _get_start_end(self): | |
start = end = (0, 0) | |
for i, _ in enumerate(self.maze_rows): | |
for j, _ in enumerate(self.maze_rows[i]): | |
if self.maze_rows[i][j] == 'A': | |
start = (i, j) | |
continue | |
if self.maze_rows[i][j] == 'B': | |
end = (i, j) | |
continue | |
return start, end | |
def solve(self): | |
# Solved with A* algorithm | |
fringe = [] | |
nss = dict() | |
heapq.heappush(fringe, (0, Node(self.start))) | |
nss[self.start] = (self.FRINGE, 0) | |
while fringe: | |
n = heapq.heappop(fringe)[1] | |
state = n.state | |
if nss[state] == self.EXPANDED: | |
continue | |
if state == self.end: | |
self.path = n.get_path_action() | |
nss[n] = (self.EXPANDED, n.cost) | |
for s, a, c in self._get_successors(n): | |
cost = n.cost + c | |
heuristic_cost = self._manhattan_distance(s) | |
ns = Node(s, n, a, cost) | |
if ns.state not in nss: | |
total_cost = ns.cost + heuristic_cost | |
heapq.heappush(fringe, (total_cost, ns)) | |
nss[ns.state] = (self.FRINGE, ns.cost) | |
elif nss[ns.state][1] > ns.cost and nss[ns.state][0] == self.FRINGE: | |
nss[ns.state] = (self.FRINGE, ns.cost) | |
def _get_successors(self, node): | |
x = node.state[0] | |
y = node.state[1] | |
actions = ['Right', 'Left', 'Up', 'Down'] | |
states = [(x,y+1), (x,y-1), (x-1,y), (x+1,y)] | |
act_dict = {a: s for a, s in zip(actions, states) if self._is_valid_state(s)} | |
for a in act_dict: | |
yield act_dict[a], a, 1 | |
def _is_valid_state(self, state): | |
x = state[0] | |
y = state[1] | |
return x >= 0 and x < len(self.maze_rows) and \ | |
y >= 0 and y < len(self.maze_rows[0]) and \ | |
self.maze_rows[x][y] != '#' | |
def _manhattan_distance(self, state): | |
return abs(self.end[0] - state[0]) + abs(self.end[1] - state[1]) | |
def draw(self): | |
if not self.path: | |
print('Error! Path is not computed!') | |
return | |
curr_x = self.start[0] | |
curr_y = self.start[1] | |
prev_act = None | |
act = None | |
next_act = None | |
for i in range(len(self.path)): | |
prev_act = self.path[i-1] if i > 0 else None | |
act = self.path[i] | |
next_act = self.path[i+1] if i < len(self.path) - 1 else None | |
if act == 'Right': | |
curr_y += 1 | |
elif act == 'Left': | |
curr_y -= 1 | |
elif act == 'Up': | |
curr_x -= 1 | |
elif act == 'Down': | |
curr_x += 1 | |
if act == 'Right' and next_act == 'Up': | |
self._set_char(curr_x, curr_y, '┘') | |
elif act == 'Right' and next_act == 'Down': | |
self._set_char(curr_x, curr_y, '┐') | |
elif act == 'Left' and next_act == 'Up': | |
self._set_char(curr_x, curr_y, '└') | |
elif act == 'Left' and next_act == 'Down': | |
self._set_char(curr_x, curr_y, '┌') | |
elif act == 'Up' and next_act == 'Left': | |
self._set_char(curr_x, curr_y, '┐') | |
elif act == 'Up' and next_act == 'Right': | |
self._set_char(curr_x, curr_y, '┌') | |
elif act == 'Down' and next_act == 'Left': | |
self._set_char(curr_x, curr_y, '┘') | |
elif act == 'Down' and next_act == 'Right': | |
self._set_char(curr_x, curr_y, '└') | |
elif act == 'Down' or act == 'Up': | |
self._set_char(curr_x, curr_y, '|') | |
elif act == 'Right' or act == 'Left': | |
self._set_char(curr_x, curr_y, '-') | |
def _set_char(self, x, y, c): | |
if self.maze_rows[x][y] != 'A' and self.maze_rows[x][y] != 'B': | |
row = list(self.maze_rows[x]) | |
row[y] = c | |
self.maze_rows[x] = "".join(row) | |
def print_maze(self): | |
for r in self.maze_rows: | |
print(r) | |
def main(): | |
n_mazes = 0 | |
current_maze = 0 | |
mazes = dict() | |
solved_mazes = dict() | |
# Parse input | |
for line in fileinput.input(): | |
line = line.strip() | |
if n_mazes == 0: | |
n_mazes = int(line) | |
else: | |
if line.isdigit(): | |
current_maze = int(line) | |
mazes[current_maze] = [] | |
else: | |
mazes[current_maze].append(line) | |
# Solve input mazes | |
print(n_mazes) | |
for m in mazes.keys(): | |
print(m) | |
maze_solver = MazeSolver(mazes[m]) | |
maze_solver.solve() | |
maze_solver.draw() | |
maze_solver.print_maze() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment