Last active
March 17, 2022 18:10
-
-
Save mpettis/24d7ffa7abf3a189ab82ab34e784b3a4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#;; Transform an input into shape fit for updating | |
#;; Here, each row has 3 observations, a modelnumber, serialnumber, and | |
#;; salesordernumber for each object. | |
library(readxl) | |
library(janitor) | |
#> | |
#> Attaching package: 'janitor' | |
#> The following objects are masked from 'package:stats': | |
#> | |
#> chisq.test, fisher.test | |
library(tidyverse) | |
inputFilepath <- file.path('C:/Users/IRINZN/Downloads', 'TIS Chiller SN MN SON to load to DB 1 of 2-DEV.xlsx') | |
workWide_df <- | |
read_excel(inputFilepath) %>% | |
clean_names() | |
#;; Glimpse of raw input structure | |
workWide_df %>% | |
glimpse() | |
#> Rows: 1,190 | |
#> Columns: 9 | |
#> $ tis_location_name <chr> "Virginia Tech Dietrick ~ | |
#> $ tisobjectid <dbl> 202130000, 200397296, 20~ | |
#> $ tis_object_name <chr> "Dietrick Chiller 2", "C~ | |
#> $ unit_model_number <chr> "CVRE", "CVHF077FA4W0PE0~ | |
#> $ unit_serial_number <chr> "l17h03794", "L15K05387"~ | |
#> $ unit_sales_order_number <chr> "003065H", "J5B395A", "L~ | |
#> $ analytic_parameter_name_id_model_number <dbl> 131085, 131085, 131085, ~ | |
#> $ analytic_parameter_name_id_serial_number <dbl> 131087, 131087, 131087, ~ | |
#> $ analytic_parameter_name_id_sales_order_number <dbl> 131127, 131127, 131127, ~ | |
names(workWide_df) <- c( | |
"tis_location_name", | |
"tisobjectid", | |
"tis_object_name", | |
"unit_modelnumber", | |
"unit_serialnumber", | |
"unit_salesordernumber", | |
"analyticparameternameid_modelnumber", | |
"analyticparameternameid_serialnumber", | |
"analyticparameternameid_salesordernumber") | |
#;; Pivot to usable form. | |
#;; See: https://tidyr.tidyverse.org/articles/pivot.html#multiple-observations-per-row | |
work_df <- | |
workWide_df %>% | |
pivot_longer( | |
!all_of(c("tis_location_name", "tisobjectid", "tis_object_name")), | |
names_to = c(".value", "k"), | |
names_sep = "_", | |
values_drop_na = TRUE) | |
#;; Glimpse of output structure | |
work_df %>% | |
glimpse() | |
#> Rows: 3,570 | |
#> Columns: 6 | |
#> $ tis_location_name <chr> "Virginia Tech Dietrick Chiller Plant", "Virgi~ | |
#> $ tisobjectid <dbl> 202130000, 202130000, 202130000, 200397296, 20~ | |
#> $ tis_object_name <chr> "Dietrick Chiller 2", "Dietrick Chiller 2", "D~ | |
#> $ k <chr> "modelnumber", "serialnumber", "salesordernumb~ | |
#> $ unit <chr> "CVRE", "l17h03794", "003065H", "CVHF077FA4W0P~ | |
#> $ analyticparameternameid <dbl> 131085, 131087, 131127, 131085, 131087, 131127~ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment