Skip to content

Instantly share code, notes, and snippets.

@mpickering
Created February 3, 2025 19:04
Show Gist options
  • Save mpickering/949618ff1f1a7b692e00eb6ab25bd78a to your computer and use it in GitHub Desktop.
Save mpickering/949618ff1f1a7b692e00eb6ab25bd78a to your computer and use it in GitHub Desktop.
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -optc-DNON_POSIX_SOURCE -ddump-to-file -ddump-simpl -fmax-worker-args=20 -flate-dmd-anal #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- | Bytecode assembler and linker
module GHC.ByteCode.Asm (
assembleBCOs, assembleOneBCO,
bcoFreeNames,
SizedSeq, sizeSS, ssElts,
iNTERP_STACK_CHECK_THRESH,
mkNativeCallInfoLit
) where
import GHC.Prelude hiding ( any )
import GHC.ByteCode.Instr
import GHC.ByteCode.InfoTable
import GHC.ByteCode.Types
import GHCi.RemoteTypes
import GHC.Runtime.Interpreter
import GHC.Runtime.Heap.Layout ( fromStgWord, StgWord )
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Literal
import GHC.Types.Unique.DSet
import GHC.Types.SptEntry
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Core.TyCon
import GHC.Data.FlatBag
import GHC.Data.SizedSeq
import GHC.StgToCmm.Layout ( ArgRep(..) )
import GHC.Cmm.Expr
import GHC.Cmm.Reg ( GlobalArgRegs(..) )
import GHC.Cmm.CallConv ( allArgRegsCover )
import GHC.Platform
import GHC.Platform.Profile
import Control.Monad
--import Control.Monad.Trans.Class
import qualified Control.Monad.Trans.State.Strict as MTL
import qualified Data.Array.Unboxed as Array
import Data.Array.Base ( UArray(..) )
import Foreign hiding (shiftL, shiftR)
import Data.Char ( ord )
import Data.Map.Strict (Map)
import Data.Maybe (fromMaybe)
import qualified Data.Map.Strict as Map
import GHC.Float (castFloatToWord32, castDoubleToWord64)
import qualified Data.List as List ( any )
import GHC.IO
import GHC.Exts
-- -----------------------------------------------------------------------------
-- Unlinked BCOs
-- CompiledByteCode represents the result of byte-code
-- compiling a bunch of functions and data types
-- | Finds external references. Remember to remove the names
-- defined by this group of BCOs themselves
bcoFreeNames :: UnlinkedBCO -> UniqDSet Name
bcoFreeNames bco
= bco_refs bco `uniqDSetMinusUniqSet` mkNameSet [unlinkedBCOName bco]
where
bco_refs (UnlinkedBCO _ _ _ _ nonptrs ptrs)
= unionManyUniqDSets (
mkUniqDSet [ n | BCOPtrName n <- elemsFlatBag ptrs ] :
mkUniqDSet [ n | BCONPtrItbl n <- elemsFlatBag nonptrs ] :
map bco_refs [ bco | BCOPtrBCO bco <- elemsFlatBag ptrs ]
)
-- -----------------------------------------------------------------------------
-- The bytecode assembler
-- The object format for bytecodes is: 16 bits for the opcode, and 16
-- for each field -- so the code can be considered a sequence of
-- 16-bit ints. Each field denotes either a stack offset or number of
-- items on the stack (eg SLIDE), and index into the pointer table (eg
-- PUSH_G), an index into the literal table (eg PUSH_I/D/L), or a
-- bytecode address in this BCO.
-- Top level assembler fn.
assembleBCOs
:: Interp
-> Profile
-> FlatBag (ProtoBCO Name)
-> [TyCon]
-> AddrEnv
-> Maybe ModBreaks
-> [SptEntry]
-> IO CompiledByteCode
assembleBCOs interp profile proto_bcos tycons top_strs modbreaks spt_entries = do
-- TODO: the profile should be bundled with the interpreter: the rts ways are
-- fixed for an interpreter
itblenv <- mkITbls interp profile tycons
bcos <- mapM (assembleBCO (profilePlatform profile)) proto_bcos
bcos' <- mallocStrings interp bcos
return CompiledByteCode
{ bc_bcos = bcos'
, bc_itbls = itblenv
, bc_ffis = concatMap protoBCOFFIs proto_bcos
, bc_strs = top_strs
, bc_breaks = modbreaks
, bc_spt_entries = spt_entries
}
-- Note [Allocating string literals]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Our strategy for handling top-level string literal bindings is described in
-- Note [Generating code for top-level string literal bindings] in GHC.StgToByteCode,
-- but not all Addr# literals in a program are guaranteed to be lifted to the
-- top level. Our strategy for handling local Addr# literals is somewhat simpler:
-- after assembling, we find all the BCONPtrStr arguments in the program, malloc
-- memory for them, and bake the resulting addresses into the instruction stream
-- in the form of BCONPtrWord arguments.
--
-- Since we do this when assembling, we only allocate the memory when we compile
-- the module, not each time we relink it. However, we do want to take care to
-- malloc the memory all in one go, since that is more efficient with
-- -fexternal-interpreter, especially when compiling in parallel.
--
-- Note that, as with top-level string literal bindings, this memory is never
-- freed, so it just leaks if the BCO is unloaded. See Note [Generating code for
-- top-level string literal bindings] in GHC.StgToByteCode for some discussion
-- about why.
--
mallocStrings :: Interp -> FlatBag UnlinkedBCO -> IO (FlatBag UnlinkedBCO)
mallocStrings interp ulbcos = do
let bytestrings = reverse (MTL.execState (mapM_ collect ulbcos) [])
ptrs <- interpCmd interp (MallocStrings bytestrings)
return (MTL.evalState (mapM splice ulbcos) ptrs)
where
splice bco@UnlinkedBCO{..} = do
lits <- mapM spliceLit unlinkedBCOLits
ptrs <- mapM splicePtr unlinkedBCOPtrs
return bco { unlinkedBCOLits = lits, unlinkedBCOPtrs = ptrs }
spliceLit (BCONPtrStr _) = do
rptrs <- MTL.get
case rptrs of
(RemotePtr p : rest) -> do
MTL.put rest
return (BCONPtrWord (fromIntegral p))
_ -> panic "mallocStrings:spliceLit"
spliceLit other = return other
splicePtr (BCOPtrBCO bco) = BCOPtrBCO <$> splice bco
splicePtr other = return other
collect UnlinkedBCO{..} = do
mapM_ collectLit unlinkedBCOLits
mapM_ collectPtr unlinkedBCOPtrs
collectLit (BCONPtrStr bs) = do
strs <- MTL.get
MTL.put (bs:strs)
collectLit _ = return ()
collectPtr (BCOPtrBCO bco) = collect bco
collectPtr _ = return ()
assembleOneBCO :: Interp -> Profile -> ProtoBCO Name -> IO UnlinkedBCO
assembleOneBCO interp profile pbco = do
-- TODO: the profile should be bundled with the interpreter: the rts ways are
-- fixed for an interpreter
ubco <- assembleBCO (profilePlatform profile) pbco
UnitFlatBag ubco' <- mallocStrings interp (UnitFlatBag ubco)
return ubco'
{-# NOINLINE inspectInstrs #-}
inspectInstrs :: Platform -> Bool -> Word -> [BCInstr] -> (Word, LabelEnvMap)
inspectInstrs platform long_jump e instrs =
inspectAsm long_jump e (mapM_ (assembleI @InspectAsm platform) instrs)
{-# NOINLINE runInstrs #-}
runInstrs :: AsmState -> Platform -> Bool -> LabelEnv -> [BCInstr] -> IO AsmState
runInstrs initial_state platform long_jumps env instrs =
flip MTL.execStateT initial_state $ runAsm long_jumps env (mapM_ (assembleI @RunAsm platform) instrs)
assembleBCO :: Platform -> ProtoBCO Name -> IO UnlinkedBCO
assembleBCO platform
(ProtoBCO { protoBCOName = nm
, protoBCOInstrs = instrs
, protoBCOBitmap = bitmap
, protoBCOBitmapSize = bsize
, protoBCOArity = arity }) = do
-- pass 1: collect up the offsets of the local labels.
let initial_offset = 0
-- Jump instructions are variable-sized, there are long and short variants
-- depending on the magnitude of the offset. However, we can't tell what
-- size instructions we will need until we have calculated the offsets of
-- the labels, which depends on the size of the instructions... So we
-- first create the label environment assuming that all jumps are short,
-- and if the final size is indeed small enough for short jumps, we are
-- done. Otherwise, we repeat the calculation, and we force all jumps in
-- this BCO to be long.
(n_insns0, lbl_map0) = inspectInstrs platform False initial_offset instrs
((n_insns, lbl_map), long_jumps)
| isLargeW (fromIntegral $ Map.size lbl_map0)
|| isLargeW n_insns0
= (inspectInstrs platform True initial_offset instrs, True)
| otherwise = ((n_insns0, lbl_map0), False)
env :: LocalLabel -> Word
env lbl = fromMaybe
(pprPanic "assembleBCO.findLabel" (ppr lbl))
(Map.lookup lbl lbl_map)
-- pass 2: run assembler and generate instructions, literals and pointers
let initial_state = AsmState emptySS emptySS emptySS
AsmState final_insns final_lits final_ptrs <- runInstrs initial_state platform long_jumps env instrs
-- precomputed size should be equal to final size
massertPpr (n_insns == sizeSS final_insns)
(text "bytecode instruction count mismatch")
let asm_insns = ssElts final_insns
!insns_arr = mkBCOByteArray $ Array.listArray (0 :: Int, fromIntegral n_insns - 1) asm_insns
!bitmap_arr = mkBCOByteArray $ mkBitmapArray bsize bitmap
ul_bco = UnlinkedBCO nm arity insns_arr bitmap_arr (fromSizedSeq final_lits) (fromSizedSeq final_ptrs)
-- 8 Aug 01: Finalisers aren't safe when attached to non-primitive
-- objects, since they might get run too early. Disable this until
-- we figure out what to do.
-- when (notNull malloced) (addFinalizer ul_bco (mapM_ zonk malloced))
return ul_bco
mkBitmapArray :: Word -> [StgWord] -> UArray Int Word
-- Here the return type must be an array of Words, not StgWords,
-- because the underlying ByteArray# will end up as a component
-- of a BCO object.
mkBitmapArray bsize bitmap
= Array.listArray (0, length bitmap) $
fromIntegral bsize : map (fromInteger . fromStgWord) bitmap
-- instrs nonptrs ptrs
data AsmState = AsmState {-# UNPACK #-} !(SizedSeq Word16)
{-# UNPACK #-} !(SizedSeq BCONPtr)
{-# UNPACK #-} !(SizedSeq BCOPtr)
data Operand
= Op Word
| IOp Int
| SmallOp Word16
| LabelOp LocalLabel
wOp :: WordOff -> Operand
wOp = Op . fromIntegral
bOp :: ByteOff -> Operand
bOp = Op . fromIntegral
truncHalfWord :: Platform -> HalfWord -> Operand
truncHalfWord platform w = case platformWordSize platform of
PW4 | w <= 65535 -> Op (fromIntegral w)
PW8 | w <= 4294967295 -> Op (fromIntegral w)
_ -> pprPanic "GHC.ByteCode.Asm.truncHalfWord" (ppr w)
ptr :: MonadAssembler m => BCOPtr -> m Word
ptr = ioptr . return
type LabelEnv = LocalLabel -> Word
largeOp :: Bool -> Operand -> Bool
largeOp long_jumps op = case op of
SmallOp _ -> False
Op w -> isLargeW w
IOp i -> isLargeI i
LabelOp _ -> long_jumps
newtype RunAsm a = RunAsm { runRunAsm :: Bool -> LabelEnv -> State# RealWorld -> AsmState -> (# State# RealWorld, AsmState, a #) }
instance Functor RunAsm where
fmap f (RunAsm x) = RunAsm (\b c s a -> case x b c s a of
(# s', a', b #) -> (# s', a', f b #) )
instance Applicative RunAsm where
pure x = RunAsm $ \_ _ s !a -> (# s, a, x #)
(RunAsm f) <*> (RunAsm x) = RunAsm $ \b c s !a -> case f b c s a of
(# s', a', f #) ->
case x b c s' a' of
(# s'', a'', x #) -> (# s'', a'', f x #)
{-# INLINE (<*>) #-}
instance Monad RunAsm where
return = pure
(RunAsm m) >>= f = RunAsm $ \b c s !a -> case m b c s a of
(# s', a', d #) -> runRunAsm (f d) b c s' a'
{-# INLINE (>>=) #-}
runAsm :: Bool -> LabelEnv -> RunAsm a -> MTL.StateT AsmState IO a
runAsm long_jumps e (RunAsm{runRunAsm}) = MTL.StateT $ \(!a) -> IO $ \s ->
case runRunAsm long_jumps e s a of
(# s', a', r #) -> (# s', (r, a') #)
-- Unrolled to avoid allocating intermediate lists.
expand :: PlatformWordSize -> Bool -> LabelEnv -> SizedSeq Word16 -> Operand -> SizedSeq Word16
expand word_size !largeArgs e =
let go !ss !o =
case o of
(SmallOp w) -> addToSS ss w
(LabelOp w) -> let !r = e w in handleLargeArg r ss
(Op w) -> handleLargeArg w ss
(IOp i) -> handleLargeArg i ss
handleLargeArg :: Integral a => a -> SizedSeq Word16 -> SizedSeq Word16
handleLargeArg w ss = if largeArgs
then largeArg word_size (fromIntegral w) (flip addToSS) ss
else addToSS ss (fromIntegral w)
in go
{-# INLINE any #-}
-- Any is unrolled manually so that the call in `emit` can be eliminated without
-- relying on SpecConstr (which does not work across modules).
any :: (a -> Bool) -> [a] -> Bool
any _ [] = False
any f [x] = f x
any f [x,y] = f x && f y
any f [x,y,z] = f x && f y && f z
any f [x1,x2,x3,x4] = f x1 && f x2 && f x3 && f x4
any f [x1,x2,x3,x4, x5] = f x1 && f x2 && f x3 && f x4 && f x5
any f [x1,x2,x3,x4,x5,x6] = f x1 && f x2 && f x3 && f x4 && f x5 && f x6
any f xs = List.any f xs
lift :: IO a -> RunAsm a
lift (IO io) = RunAsm $ \_ _ s !asm -> case io s of
(# s', r #) -> (# s', asm, r #)
getR :: RunAsm AsmState
getR = RunAsm $ \_ _ s !asm -> (# s, asm, asm #)
putR :: AsmState -> RunAsm ()
putR !asm = RunAsm $ \_ _ s !_ -> (# s, asm, () #)
askLongJumps :: RunAsm Bool
askLongJumps = RunAsm $ \a _ s !asm -> (# s, asm, a #)
askEnv :: RunAsm LabelEnv
askEnv = RunAsm $ \_ b s !asm -> (# s, asm, b #)
instance MonadAssembler RunAsm where
ioptr p_io = do
p <- lift p_io
(AsmState st_i0 st_l0 st_p0) <- getR
let st_p1 = addToSS st_p0 p
putR (AsmState st_i0 st_l0 st_p1)
return (sizeSS st_p0)
lit lits = do
(AsmState st_i0 st_l0 st_p0) <- getR
let st_l1 = addListToSS st_l0 lits
putR $ AsmState st_i0 st_l1 st_p0
return (sizeSS st_l0)
label _ = return ()
emit pwordsize w ops = do
long_jumps <- askLongJumps
e <- askEnv
let !largeArgs = any (largeOp long_jumps) ops
!opcode
| largeArgs = largeArgInstr w
| otherwise = w
(AsmState st_i0 st_l0 st_p0) <- getR
let st_i1 = addToSS st_i0 opcode
st_i2 = foldl' (expand pwordsize largeArgs e) st_i1 ops
putR $ AsmState st_i2 st_l0 st_p0
{-# INLINE emit #-}
{-# INLINE label #-}
{-# INLINE lit #-}
{-# INLINE ioptr #-}
type LabelEnvMap = Map LocalLabel Word
data InspectState = InspectState
{ instrCount :: !Word
, ptrCount :: !Word
, litCount :: !Word
, lblEnv :: LabelEnvMap
}
newtype InspectEnv = InspectEnv { _inspectLongJumps :: Bool
}
newtype InspectAsm a = InspectAsm { runInspectAsm :: InspectEnv -> InspectState -> (# InspectState, a #) }
instance Functor InspectAsm where
fmap f (InspectAsm k) = InspectAsm $ \a b -> case k a b of
(# b', c #) -> (# b', f c #)
instance Applicative InspectAsm where
pure x = InspectAsm $ \_ s -> (# s, x #)
(InspectAsm f) <*> (InspectAsm x) = InspectAsm $ \a b -> case f a b of
(# s', f' #) ->
case x a s' of
(# s'', x' #) -> (# s'', f' x' #)
instance Monad InspectAsm where
return = pure
(InspectAsm m) >>= f = InspectAsm $ \ a b -> case m a b of
(# s', a' #) -> runInspectAsm (f a') a s'
get_ :: InspectAsm InspectState
get_ = InspectAsm $ \_ b -> (# b, b #)
put_ :: InspectState -> InspectAsm ()
put_ !s = InspectAsm $ \_ _ -> (# s, () #)
modify_ :: (InspectState -> InspectState) -> InspectAsm ()
modify_ f = InspectAsm $ \_ s -> let !s' = f s in (# s', () #)
ask_ :: InspectAsm InspectEnv
ask_ = InspectAsm $ \a b -> (# b, a #)
inspectAsm :: Bool -> Word -> InspectAsm () -> (Word, LabelEnvMap)
inspectAsm long_jumps initial_offset (InspectAsm s) =
case s (InspectEnv long_jumps) (InspectState initial_offset 0 0 Map.empty) of
(# res, () #) -> (instrCount res, lblEnv res)
{-# INLINE inspectAsm #-}
instance MonadAssembler InspectAsm where
ioptr _ = do
s <- get_
let n = ptrCount s
put_ (s { ptrCount = n + 1 })
return n
lit ls = do
s <- get_
let n = litCount s
put_ (s { litCount = n + strictGenericLength ls })
return n
label lbl = modify_ (\s -> s { lblEnv = Map.insert lbl (instrCount s) (lblEnv s) })
emit pwordsize _ ops = do
InspectEnv long_jumps <- ask_
let size = sum (map count ops) + 1
largeOps = any (largeOp long_jumps) ops
count (SmallOp _) = 1
count (LabelOp _) = count (Op 0)
count (Op _) = if largeOps then largeArg16s pwordsize else 1
count (IOp _) = if largeOps then largeArg16s pwordsize else 1
s <- get_
put_ (s { instrCount = instrCount s + size })
{-# INLINE emit #-}
{-# INLINE label #-}
{-# INLINE lit #-}
{-# INLINE ioptr #-}
-- Bring in all the bci_ bytecode constants.
#include "Bytecodes.h"
largeArgInstr :: Word16 -> Word16
largeArgInstr bci = bci_FLAG_LARGE_ARGS .|. bci
{-# INLINE largeArg #-}
largeArg :: PlatformWordSize -> Word64 -> (Word16 -> r -> r) -> r -> r
largeArg wsize w k r = case wsize of
PW8 -> ((fromIntegral (w `shiftR` 48)) `k`
((fromIntegral (w `shiftR` 32)) `k`
((fromIntegral (w `shiftR` 16)) `k`
((fromIntegral w) `k` r))))
PW4 -> assertPpr (w < fromIntegral (maxBound :: Word32))
(text "largeArg too big:" <+> ppr w) $
((fromIntegral (w `shiftR` 16)) `k`
((fromIntegral w) `k` r))
largeArg16s :: PlatformWordSize -> Word
largeArg16s pwordsize = case pwordsize of
PW8 -> 4
PW4 -> 2
class Monad m => MonadAssembler m where
ioptr :: IO BCOPtr -> m Word
lit :: [BCONPtr] -> m Word
label :: LocalLabel -> m ()
emit :: PlatformWordSize -> Word16 -> [Operand] -> m ()
{-# SPECIALISE assembleI :: Platform -> BCInstr -> InspectAsm () #-}
{-# SPECIALISE assembleI :: Platform -> BCInstr -> RunAsm () #-}
assembleI :: forall m . MonadAssembler m
=> Platform
-> BCInstr
-> m ()
assembleI platform i = case i of
STKCHECK n -> {-# SCC "STKCHECK" #-} emit_ bci_STKCHECK [Op n]
PUSH_L o1 -> {-# SCC "PUSH_L" #-} emit_ bci_PUSH_L [wOp o1]
PUSH_LL o1 o2 -> {-# SCC "PUSH_LL" #-} emit_ bci_PUSH_LL [wOp o1, wOp o2]
PUSH_LLL o1 o2 o3 -> {-# SCC "PUSH_LLL" #-} emit_ bci_PUSH_LLL [wOp o1, wOp o2, wOp o3]
PUSH8 o1 -> emit_ bci_PUSH8 [bOp o1]
PUSH16 o1 -> emit_ bci_PUSH16 [bOp o1]
PUSH32 o1 -> emit_ bci_PUSH32 [bOp o1]
PUSH8_W o1 -> emit_ bci_PUSH8_W [bOp o1]
PUSH16_W o1 -> emit_ bci_PUSH16_W [bOp o1]
PUSH32_W o1 -> emit_ bci_PUSH32_W [bOp o1]
PUSH_G nm -> do p <- ptr (BCOPtrName nm)
emit_ bci_PUSH_G [Op p]
PUSH_PRIMOP op -> do p <- ptr (BCOPtrPrimOp op)
emit_ bci_PUSH_G [Op p]
PUSH_BCO proto -> do let ul_bco = assembleBCO platform proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
emit_ bci_PUSH_G [Op p]
PUSH_ALTS proto pk
-> do let ul_bco = assembleBCO platform proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
emit_ (push_alts pk) [Op p]
PUSH_ALTS_TUPLE proto call_info tuple_proto
-> do let ul_bco = assembleBCO platform proto
ul_tuple_bco = assembleBCO platform
tuple_proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
p_tup <- ioptr (liftM BCOPtrBCO ul_tuple_bco)
info <- word (fromIntegral $
mkNativeCallInfoSig platform call_info)
emit_ bci_PUSH_ALTS_T
[Op p, Op info, Op p_tup]
PUSH_PAD8 -> emit_ bci_PUSH_PAD8 []
PUSH_PAD16 -> emit_ bci_PUSH_PAD16 []
PUSH_PAD32 -> emit_ bci_PUSH_PAD32 []
PUSH_UBX8 lit -> do np <- literal lit
emit_ bci_PUSH_UBX8 [Op np]
PUSH_UBX16 lit -> do np <- literal lit
emit_ bci_PUSH_UBX16 [Op np]
PUSH_UBX32 lit -> do np <- literal lit
emit_ bci_PUSH_UBX32 [Op np]
PUSH_UBX lit nws -> do np <- literal lit
emit_ bci_PUSH_UBX [Op np, wOp nws]
-- see Note [Generating code for top-level string literal bindings] in GHC.StgToByteCode
PUSH_ADDR nm -> do np <- lit [BCONPtrAddr nm]
emit_ bci_PUSH_UBX [Op np, SmallOp 1]
PUSH_APPLY_N -> emit_ bci_PUSH_APPLY_N []
PUSH_APPLY_V -> emit_ bci_PUSH_APPLY_V []
PUSH_APPLY_F -> emit_ bci_PUSH_APPLY_F []
PUSH_APPLY_D -> emit_ bci_PUSH_APPLY_D []
PUSH_APPLY_L -> emit_ bci_PUSH_APPLY_L []
PUSH_APPLY_P -> emit_ bci_PUSH_APPLY_P []
PUSH_APPLY_PP -> emit_ bci_PUSH_APPLY_PP []
PUSH_APPLY_PPP -> emit_ bci_PUSH_APPLY_PPP []
PUSH_APPLY_PPPP -> emit_ bci_PUSH_APPLY_PPPP []
PUSH_APPLY_PPPPP -> emit_ bci_PUSH_APPLY_PPPPP []
PUSH_APPLY_PPPPPP -> emit_ bci_PUSH_APPLY_PPPPPP []
SLIDE n by -> emit_ bci_SLIDE [wOp n, wOp by]
ALLOC_AP n -> emit_ bci_ALLOC_AP [truncHalfWord platform n]
ALLOC_AP_NOUPD n -> emit_ bci_ALLOC_AP_NOUPD [truncHalfWord platform n]
ALLOC_PAP arity n -> emit_ bci_ALLOC_PAP [truncHalfWord platform arity, truncHalfWord platform n]
MKAP off sz -> emit_ bci_MKAP [wOp off, truncHalfWord platform sz]
MKPAP off sz -> emit_ bci_MKPAP [wOp off, truncHalfWord platform sz]
UNPACK n -> emit_ bci_UNPACK [wOp n]
PACK dcon sz -> do itbl_no <- lit [BCONPtrItbl (getName dcon)]
emit_ bci_PACK [Op itbl_no, wOp sz]
LABEL lbl -> label lbl
TESTLT_I i l -> do np <- int i
emit_ bci_TESTLT_I [Op np, LabelOp l]
TESTEQ_I i l -> do np <- int i
emit_ bci_TESTEQ_I [Op np, LabelOp l]
TESTLT_W w l -> do np <- word w
emit_ bci_TESTLT_W [Op np, LabelOp l]
TESTEQ_W w l -> do np <- word w
emit_ bci_TESTEQ_W [Op np, LabelOp l]
TESTLT_I64 i l -> do np <- word64 (fromIntegral i)
emit_ bci_TESTLT_I64 [Op np, LabelOp l]
TESTEQ_I64 i l -> do np <- word64 (fromIntegral i)
emit_ bci_TESTEQ_I64 [Op np, LabelOp l]
TESTLT_I32 i l -> do np <- word (fromIntegral i)
emit_ bci_TESTLT_I32 [Op np, LabelOp l]
TESTEQ_I32 i l -> do np <- word (fromIntegral i)
emit_ bci_TESTEQ_I32 [Op np, LabelOp l]
TESTLT_I16 i l -> do np <- word (fromIntegral i)
emit_ bci_TESTLT_I16 [Op np, LabelOp l]
TESTEQ_I16 i l -> do np <- word (fromIntegral i)
emit_ bci_TESTEQ_I16 [Op np, LabelOp l]
TESTLT_I8 i l -> do np <- word (fromIntegral i)
emit_ bci_TESTLT_I8 [Op np, LabelOp l]
TESTEQ_I8 i l -> do np <- word (fromIntegral i)
emit_ bci_TESTEQ_I8 [Op np, LabelOp l]
TESTLT_W64 w l -> do np <- word64 w
emit_ bci_TESTLT_W64 [Op np, LabelOp l]
TESTEQ_W64 w l -> do np <- word64 w
emit_ bci_TESTEQ_W64 [Op np, LabelOp l]
TESTLT_W32 w l -> do np <- word (fromIntegral w)
emit_ bci_TESTLT_W32 [Op np, LabelOp l]
TESTEQ_W32 w l -> do np <- word (fromIntegral w)
emit_ bci_TESTEQ_W32 [Op np, LabelOp l]
TESTLT_W16 w l -> do np <- word (fromIntegral w)
emit_ bci_TESTLT_W16 [Op np, LabelOp l]
TESTEQ_W16 w l -> do np <- word (fromIntegral w)
emit_ bci_TESTEQ_W16 [Op np, LabelOp l]
TESTLT_W8 w l -> do np <- word (fromIntegral w)
emit_ bci_TESTLT_W8 [Op np, LabelOp l]
TESTEQ_W8 w l -> do np <- word (fromIntegral w)
emit_ bci_TESTEQ_W8 [Op np, LabelOp l]
TESTLT_F f l -> do np <- float f
emit_ bci_TESTLT_F [Op np, LabelOp l]
TESTEQ_F f l -> do np <- float f
emit_ bci_TESTEQ_F [Op np, LabelOp l]
TESTLT_D d l -> do np <- double d
emit_ bci_TESTLT_D [Op np, LabelOp l]
TESTEQ_D d l -> do np <- double d
emit_ bci_TESTEQ_D [Op np, LabelOp l]
TESTLT_P i l -> emit_ bci_TESTLT_P [SmallOp i, LabelOp l]
TESTEQ_P i l -> emit_ bci_TESTEQ_P [SmallOp i, LabelOp l]
CASEFAIL -> emit_ bci_CASEFAIL []
SWIZZLE stkoff n -> emit_ bci_SWIZZLE [wOp stkoff, IOp n]
JMP l -> emit_ bci_JMP [LabelOp l]
ENTER -> emit_ bci_ENTER []
RETURN rep -> emit_ (return_non_tuple rep) []
RETURN_TUPLE -> emit_ bci_RETURN_T []
CCALL off m_addr i -> do np <- addr m_addr
emit_ bci_CCALL [wOp off, Op np, SmallOp i]
PRIMCALL -> emit_ bci_PRIMCALL []
BRK_FUN arr tick_mod tickx info_mod infox cc ->
do p1 <- ptr (BCOPtrBreakArray arr)
tick_addr <- addr tick_mod
info_addr <- addr info_mod
np <- addr cc
emit_ bci_BRK_FUN [ Op p1
, Op tick_addr, Op info_addr
, SmallOp tickx, SmallOp infox
, Op np
]
#if MIN_VERSION_rts(1,0,3)
BCO_NAME name -> do np <- lit [BCONPtrStr name]
emit_ bci_BCO_NAME [Op np]
#endif
where
emit_ = emit word_size
literal :: Literal -> m Word
literal (LitLabel fs _) = litlabel fs
literal LitNullAddr = word 0
literal (LitFloat r) = float (fromRational r)
literal (LitDouble r) = double (fromRational r)
literal (LitChar c) = int (ord c)
literal (LitString bs) = lit [BCONPtrStr bs]
-- LitString requires a zero-terminator when emitted
literal (LitNumber nt i) = case nt of
LitNumInt -> word (fromIntegral i)
LitNumWord -> word (fromIntegral i)
LitNumInt8 -> word8 (fromIntegral i)
LitNumWord8 -> word8 (fromIntegral i)
LitNumInt16 -> word16 (fromIntegral i)
LitNumWord16 -> word16 (fromIntegral i)
LitNumInt32 -> word32 (fromIntegral i)
LitNumWord32 -> word32 (fromIntegral i)
LitNumInt64 -> word64 (fromIntegral i)
LitNumWord64 -> word64 (fromIntegral i)
LitNumBigNat -> panic "GHC.ByteCode.Asm.literal: LitNumBigNat"
-- We can lower 'LitRubbish' to an arbitrary constant, but @NULL@ is most
-- likely to elicit a crash (rather than corrupt memory) in case absence
-- analysis messed up.
literal (LitRubbish {}) = word 0
litlabel fs = lit [BCONPtrLbl fs]
addr (RemotePtr a) = words [fromIntegral a]
words ws = lit (map BCONPtrWord ws)
word w = words [w]
word_size = platformWordSize platform
word_size_bits = platformWordSizeInBits platform
-- Make lists of host-sized words for literals, so that when the
-- words are placed in memory at increasing addresses, the
-- bit pattern is correct for the host's word size and endianness.
--
-- Note that we only support host endianness == target endianness for now,
-- even with the external interpreter. This would need to be fixed to
-- support host endianness /= target endianness
int :: Int -> m Word
int i = word (fromIntegral i)
float :: Float -> m Word
float f = word32 (castFloatToWord32 f)
double :: Double -> m Word
double d = word64 (castDoubleToWord64 d)
word64 :: Word64 -> m Word
word64 ww = case word_size of
PW4 ->
let !wl = fromIntegral ww
!wh = fromIntegral (ww `unsafeShiftR` 32)
in case platformByteOrder platform of
LittleEndian -> words [wl,wh]
BigEndian -> words [wh,wl]
PW8 -> word (fromIntegral ww)
word8 :: Word8 -> m Word
word8 x = case platformByteOrder platform of
LittleEndian -> word (fromIntegral x)
BigEndian -> word (fromIntegral x `unsafeShiftL` (word_size_bits - 8))
word16 :: Word16 -> m Word
word16 x = case platformByteOrder platform of
LittleEndian -> word (fromIntegral x)
BigEndian -> word (fromIntegral x `unsafeShiftL` (word_size_bits - 16))
word32 :: Word32 -> m Word
word32 x = case platformByteOrder platform of
LittleEndian -> word (fromIntegral x)
BigEndian -> case word_size of
PW4 -> word (fromIntegral x)
PW8 -> word (fromIntegral x `unsafeShiftL` 32)
isLargeW :: Word -> Bool
isLargeW n = n > 65535
isLargeI :: Int -> Bool
isLargeI n = n > 32767 || n < -32768
push_alts :: ArgRep -> Word16
push_alts V = bci_PUSH_ALTS_V
push_alts P = bci_PUSH_ALTS_P
push_alts N = bci_PUSH_ALTS_N
push_alts L = bci_PUSH_ALTS_L
push_alts F = bci_PUSH_ALTS_F
push_alts D = bci_PUSH_ALTS_D
push_alts V16 = error "push_alts: vector"
push_alts V32 = error "push_alts: vector"
push_alts V64 = error "push_alts: vector"
return_non_tuple :: ArgRep -> Word16
return_non_tuple V = bci_RETURN_V
return_non_tuple P = bci_RETURN_P
return_non_tuple N = bci_RETURN_N
return_non_tuple L = bci_RETURN_L
return_non_tuple F = bci_RETURN_F
return_non_tuple D = bci_RETURN_D
return_non_tuple V16 = error "return_non_tuple: vector"
return_non_tuple V32 = error "return_non_tuple: vector"
return_non_tuple V64 = error "return_non_tuple: vector"
{-
we can only handle up to a fixed number of words on the stack,
because we need a stg_ctoi_tN stack frame for each size N. See
Note [unboxed tuple bytecodes and tuple_BCO].
If needed, you can support larger tuples by adding more in
Jumps.cmm, StgMiscClosures.cmm, Interpreter.c and MiscClosures.h and
raising this limit.
Note that the limit is the number of words passed on the stack.
If the calling convention passes part of the tuple in registers, the
maximum number of tuple elements may be larger. Elements can also
take multiple words on the stack (for example Double# on a 32 bit
platform).
-}
maxTupleReturnNativeStackSize :: WordOff
maxTupleReturnNativeStackSize = 62
{-
Construct the call_info word that stg_ctoi_t, stg_ret_t and stg_primcall
use to convert arguments between the native calling convention and the
interpreter.
See Note [GHCi and native call registers] for more information.
-}
mkNativeCallInfoSig :: Platform -> NativeCallInfo -> Word32
mkNativeCallInfoSig platform NativeCallInfo{..}
| nativeCallType == NativeTupleReturn && nativeCallStackSpillSize > maxTupleReturnNativeStackSize
= pprPanic "mkNativeCallInfoSig: tuple too big for the bytecode compiler"
(ppr nativeCallStackSpillSize <+> text "stack words." <+>
text "Use -fobject-code to get around this limit"
)
| otherwise
= -- 24 bits for register bitmap
assertPpr (length argRegs <= 24) (text "too many registers for bitmap:" <+> ppr (length argRegs))
-- 8 bits for continuation offset (only for NativeTupleReturn)
assertPpr (cont_offset < 255) (text "continuation offset too large:" <+> ppr cont_offset)
-- all regs accounted for
assertPpr (all (`elem` (map fst argRegs)) (regSetToList nativeCallRegs))
( vcat
[ text "not all registers accounted for"
, text "argRegs:" <+> ppr argRegs
, text "nativeCallRegs:" <+> ppr nativeCallRegs
] ) $
-- SIMD GHCi TODO: the above assertion doesn't account for register overlap;
-- it will need to be adjusted for SIMD vector support in the bytecode interpreter.
foldl' reg_bit 0 argRegs .|. (cont_offset `shiftL` 24)
where
cont_offset :: Word32
cont_offset
| nativeCallType == NativeTupleReturn = fromIntegral nativeCallStackSpillSize
| otherwise = 0 -- there is no continuation for primcalls
reg_bit :: Word32 -> (GlobalReg, Int) -> Word32
reg_bit x (r, n)
| r `elemRegSet` nativeCallRegs = x .|. 1 `shiftL` n
| otherwise = x
argRegs = zip (allArgRegsCover platform SCALAR_ARG_REGS) [0..]
-- The bytecode interpreter does not (currently) handle vector registers,
-- so we only use the scalar argument-passing registers here.
mkNativeCallInfoLit :: Platform -> NativeCallInfo -> Literal
mkNativeCallInfoLit platform call_info =
mkLitWord platform . fromIntegral $ mkNativeCallInfoSig platform call_info
iNTERP_STACK_CHECK_THRESH :: Int
iNTERP_STACK_CHECK_THRESH = INTERP_STACK_CHECK_THRESH
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment