Created
August 22, 2015 23:22
-
-
Save mplourde/173a5d95a5034bb13bf5 to your computer and use it in GitHub Desktop.
VARselect
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
vsel <- function (y, lag.max = 10, type = c("const", "trend", "both", | |
"none"), season = NULL, exogen = NULL) | |
{ | |
browser() | |
y <- as.matrix(y) | |
if (any(is.na(y))) | |
stop("\nNAs in y.\n") | |
colnames(y) <- make.names(colnames(y)) | |
K <- ncol(y) | |
lag.max <- abs(as.integer(lag.max)) | |
type <- match.arg(type) | |
lag <- abs(as.integer(lag.max + 1)) | |
ylagged <- embed(y, lag)[, -c(1:K)] | |
yendog <- y[-c(1:lag.max), ] | |
sample <- nrow(ylagged) | |
rhs <- switch(type, const = rep(1, sample), trend = seq(lag.max + | |
1, length = sample), both = cbind(rep(1, sample), seq(lag.max + | |
1, length = sample)), none = NULL) | |
if (!(is.null(season))) { | |
season <- abs(as.integer(season)) | |
dum <- (diag(season) - 1/season)[, -season] | |
dums <- dum | |
while (nrow(dums) < sample) { | |
dums <- rbind(dums, dum) | |
} | |
dums <- dums[1:sample, ] | |
rhs <- cbind(rhs, dums) | |
} | |
if (!(is.null(exogen))) { | |
exogen <- as.matrix(exogen) | |
if (!identical(nrow(exogen), nrow(y))) { | |
stop("\nDifferent row size of y and exogen.\n") | |
} | |
if (is.null(colnames(exogen))) { | |
colnames(exogen) <- paste("exo", 1:ncol(exogen), | |
sep = "") | |
warning(paste("No column names supplied in exogen, using:", | |
paste(colnames(exogen), collapse = ", "), ", instead.\n")) | |
} | |
colnames(exogen) <- make.names(colnames(exogen)) | |
rhs <- cbind(rhs, exogen[-c(1:lag.max), ]) | |
} | |
idx <- seq(K, K * lag.max, K) | |
if (!is.null(rhs)) { | |
detint <- ncol(as.matrix(rhs)) | |
} | |
else { | |
detint <- 0 | |
} | |
criteria <- matrix(NA, nrow = 4, ncol = lag.max) | |
rownames(criteria) <- c("AIC(n)", "HQ(n)", "SC(n)", "FPE(n)") | |
colnames(criteria) <- paste(seq(1:lag.max)) | |
for (i in 1:lag.max) { | |
ys.lagged <- cbind(ylagged[, c(1:idx[i])], rhs) | |
sampletot <- nrow(y) | |
nstar <- ncol(ys.lagged) | |
resids <- lm.fit(x = ys.lagged, y = yendog)$residuals | |
sigma.det <- det(crossprod(resids)/sample) | |
criteria[1, i] <- log(sigma.det) + (2/sample) * (i * | |
K^2 + K * detint) | |
criteria[2, i] <- log(sigma.det) + (2 * log(log(sample))/sample) * | |
(i * K^2 + K * detint) | |
criteria[3, i] <- log(sigma.det) + (log(sample)/sample) * | |
(i * K^2 + K * detint) | |
criteria[4, i] <- ((sample + nstar)/(sample - nstar))^K * | |
sigma.det | |
} | |
order <- apply(criteria, 1, which.min) | |
return(list(selection = order, criteria = criteria)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment