Skip to content

Instantly share code, notes, and snippets.

@mrcaseb
Created March 9, 2022 07:58
Show Gist options
  • Save mrcaseb/7e74afef42eb985c66d1341d407b6dbb to your computer and use it in GitHub Desktop.
Save mrcaseb/7e74afef42eb985c66d1341d407b6dbb to your computer and use it in GitHub Desktop.
Code to recreate prediction game plot from https://twitter.com/mrcaseb/status/1493242514270261250
library(dplyr, warn.conflicts = FALSE)
library(ggplot2)
preds <- nflreadr::csv_from_url("https://raw.githubusercontent.com/nflverse/nfldata/master/data/predictions.csv")
g <- nflreadr::load_schedules(2021)
points <- preds |>
filter(prediction != 50) |>
left_join(g |> select(game_id, week, result), by = "game_id") |>
mutate(
m = case_when(
week <= 18 ~ 1,
week == 19 ~ 2,
week == 20 ~ 3,
week == 21 ~ 4,
week == 22 ~ 5
),
r = ifelse(result >= 0, 1, 0),
points = m * (25 - (100 * (prediction / 100 - r)^2)),
points = ifelse(result == 0, 0, points)
) |>
group_by(screen_name) |>
summarise(p = sum(points, na.rm = TRUE) |> round(1)) |>
ungroup() |>
arrange(desc(p)) |>
mutate(xaxis = 1:n())
top <- points |>
slice_max(p, n = 10) |>
mutate(string = glue::glue("#{format(xaxis)} {format(screen_name)} {format(p, nsmall = 1)}"))
rest <- points |> filter(!screen_name %in% c(top$screen_name))
market <- points |> filter(screen_name == "Market")
highlight_col <- "#00685BFF"
market_col <- "#311A92FF"
p <- ggplot(NULL, aes(x = xaxis, y = p)) +
geom_point(data = rest, alpha = 0.1) +
geom_point(data = top, alpha = 0.8, color = highlight_col, size = 2) +
geom_vline(xintercept = market$xaxis, alpha = 0.4, color = market_col, size = 0.5) +
scale_x_log10("Rank (Logarithmic)") +
scale_y_continuous("Score", breaks = scales::breaks_pretty(n = 15)) +
ggthemes::theme_fivethirtyeight(base_size = 11, base_family = "Roboto Condensed") +
annotate(
"label", x = market$xaxis, y = -400, label = paste0("#", market$xaxis, " Market ", market$p),
color = market_col, family = "Fira Code", fill = "#F0F0F0", size = 2.5
) +
annotate(
"label", x = 0.5, y = 200, hjust = 0, vjust = 1,
label = glue::glue("TOP {nrow(top)}:\n", glue::glue_collapse(top$string, sep = "\n")),
color = highlight_col, family = "Fira Code", fill = "#F0F0F0", size = 2.5
) +
labs(
title = "NFL Game Data Prediction Game Standings",
subtitle = "Final Scores of the 2021 Season",
caption = glue::glue("Figure:@mrcaseb | Data:@LeeSharpeNFL | {lubridate::today()}")
) +
theme(
plot.title.position = "plot",
axis.title = element_text(),
panel.grid.major.x = element_blank()
) +
NULL
ggsave("prediction_game.png", plot = p, width = 16, height = 10, units = "cm", dpi = 600)
@mrcaseb
Copy link
Author

mrcaseb commented Mar 9, 2022

Output
prediction_game

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment