Created
March 19, 2017 18:02
-
-
Save mrdrozdov/6abf9fdb59b39fa404431f68b8703be6 to your computer and use it in GitHub Desktop.
mnist log reg pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
from torch.autograd import Variable | |
# Training settings | |
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
parser.add_argument('--debug', action='store_true', default=False, | |
help='enables breakpoints and additional logging') | |
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | |
help='input batch size for training (default: 64)') | |
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
help='input batch size for testing (default: 1000)') | |
parser.add_argument('--epochs', type=int, default=10, metavar='N', | |
help='number of epochs to train (default: 10)') | |
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | |
help='learning rate (default: 0.01)') | |
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', | |
help='SGD momentum (default: 0.5)') | |
parser.add_argument('--no-cuda', action='store_true', default=False, | |
help='enables CUDA training') | |
parser.add_argument('--seed', type=int, default=1, metavar='S', | |
help='random seed (default: 1)') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='how many batches to wait before logging training status') | |
args = parser.parse_args() | |
args.cuda = not args.no_cuda and torch.cuda.is_available() | |
torch.manual_seed(args.seed) | |
if args.cuda: | |
torch.cuda.manual_seed(args.seed) | |
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=True, download=True, | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.batch_size, shuffle=True, **kwargs) | |
test_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.batch_size, shuffle=True, **kwargs) | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.linear = nn.Linear(784, 10) | |
def forward(self, x): | |
features = x.view(-1, 784) | |
y = self.linear(features) | |
outp = F.log_softmax(y) | |
if args.debug: | |
print("Batch Size: {}".format(x.size(0))) | |
print("Image Dimensions: {}".format(x.size()[1:])) | |
print("Feature Dimension: {}".format(features.size(1))) | |
print("Example X:\n{}".format(x[0])) | |
print("Example X:\n{}".format(x[0] < 0)) | |
print("Example Y:\n{}".format(y[0])) | |
print("Example Output:\n{}".format(outp[0])) | |
import ipdb; ipdb.set_trace() | |
pass | |
return outp | |
model = Net() | |
if args.cuda: | |
model.cuda() | |
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | |
def train(epoch): | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
if args.cuda: | |
data, target = data.cuda(), target.cuda() | |
data, target = Variable(data), Variable(target) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.data[0])) | |
def test(epoch): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
for data, target in test_loader: | |
if args.cuda: | |
data, target = data.cuda(), target.cuda() | |
data, target = Variable(data, volatile=True), Variable(target) | |
output = model(data) | |
test_loss += F.nll_loss(output, target).data[0] | |
pred = output.data.max(1)[1] # get the index of the max log-probability | |
correct += pred.eq(target.data).cpu().sum() | |
test_loss = test_loss | |
test_loss /= len(test_loader) # loss function already averages over batch size | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
for epoch in range(1, args.epochs + 1): | |
train(epoch) | |
test(epoch) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment