Last active
March 14, 2023 05:03
-
-
Save mrdwab/11380733 to your computer and use it in GitHub Desktop.
The faster version of `concat.split` that makes use of `data.table` efficiency.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### "Unbalanced" data | |
dat_ub <- data.frame( | |
header1 = LETTERS[1:5], header2 = LETTERS[6:10], | |
start = c("1,100", "11,222", "10", "7,8,9,10,11", "1"), | |
end = c("99,199,299", "33,444,1,2,3,4,5,6", "72", "10,9,8,7,6", "3")) | |
dat_ub$id <- with(dat_ub, | |
ave(rep(1, nrow(dat_ub)), | |
header1, header2, | |
FUN = seq_along)) | |
### "Balanced" data | |
dat_b <- data.frame( | |
header1 = LETTERS[1:5], header2 = LETTERS[6:10], | |
start = c("1,100,200", "11,222", "10", "7,8,9,10,11", "1"), | |
end = c("99,199,299", "33,444", "72", "10,9,8,7,6", "3")) | |
dat_b$id <- with(dat_b, | |
ave(rep(1, nrow(dat_b)), | |
header1, header2, | |
FUN = seq_along)) | |
### Bigger versions of each of the above | |
dat_50K_ub <- do.call(rbind, replicate(10000, dat_ub, FALSE)) | |
dat_50K_ub$id <- with(dat_50K_ub, | |
ave(rep(1, nrow(dat_50K_ub)), | |
header1, header2, | |
FUN = seq_along)) | |
dat_50K_b <- do.call(rbind, replicate(10000, dat_b, FALSE)) | |
dat_50K_b$id <- with(dat_50K_b, | |
ave(rep(1, nrow(dat_50K_b)), | |
header1, header2, | |
FUN = seq_along)) | |
### Test it out! | |
cSplit(dat_ub, c("start", "end"), ",", direction="long") | |
cSplit(dat_b, c("start", "end"), ",") | |
cSplit(dat_b, c("start", "end"), ",", makeEqual = TRUE) | |
cSplit(dat_50K_ub, c("start", "end"), ",") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
cSplit <- function(indt, splitCols, sep = ",", direction = "wide", | |
makeEqual = NULL, fixed = TRUE, drop = TRUE, | |
stripWhite = FALSE) { | |
message("`cSplit` is now part of the 'splitstackshape' package (V1.4.0)") | |
## requires data.table >= 1.8.11 | |
require(data.table) | |
if (!is.data.table(indt)) setDT(indt) | |
if (is.numeric(splitCols)) splitCols <- names(indt)[splitCols] | |
if (any(!vapply(indt[, splitCols, with = FALSE], | |
is.character, logical(1L)))) { | |
indt[, eval(splitCols) := lapply(.SD, as.character), | |
.SDcols = splitCols] | |
} | |
if (length(sep) == 1) | |
sep <- rep(sep, length(splitCols)) | |
if (length(sep) != length(splitCols)) { | |
stop("Verify you have entered the correct number of sep") | |
} | |
if (isTRUE(stripWhite)) { | |
indt[, eval(splitCols) := mapply(function(x, y) | |
gsub(sprintf("\\s+%s\\s+|\\s+%s|%s\\s+", | |
x, x, x), x, y), | |
sep, indt[, splitCols, with = FALSE], | |
SIMPLIFY = FALSE)] | |
} | |
X <- lapply(seq_along(splitCols), function(x) { | |
strsplit(indt[[splitCols[x]]], split = sep[x], fixed = fixed) | |
}) | |
if (direction == "long") { | |
if (is.null(makeEqual)) { | |
IV <- function(x,y) if (identical(x,y)) TRUE else FALSE | |
makeEqual <- ifelse(Reduce(IV, rapply(X, length, how = "list")), | |
FALSE, TRUE) | |
} | |
} else if (direction == "wide") { | |
if (!is.null(makeEqual)) { | |
if (!isTRUE(makeEqual)) { | |
message("makeEqual specified as FALSE but set to TRUE") | |
makeEqual <- TRUE | |
} | |
makeEqual <- TRUE | |
} else { | |
makeEqual <- TRUE | |
} | |
} | |
if (isTRUE(makeEqual)) { | |
SetUp <- lapply(seq_along(X), function(y) { | |
A <- vapply(X[[y]], length, 1L) | |
list(Mat = cbind(rep(seq_along(A), A), sequence(A)), | |
Val = unlist(X[[y]])) | |
}) | |
Ncol <- max(unlist(lapply(SetUp, function(y) y[["Mat"]][, 2]), | |
use.names = FALSE)) | |
X <- lapply(seq_along(SetUp), function(y) { | |
M <- matrix(NA_character_, nrow = nrow(indt), ncol = Ncol) | |
M[SetUp[[y]][["Mat"]]] <- SetUp[[y]][["Val"]] | |
M | |
}) | |
if (direction == "wide") { | |
X <- lapply(seq_along(X), function(x) { | |
colnames(X[[x]]) <- paste(splitCols[x], | |
sequence(ncol(X[[x]])), | |
sep = "_") | |
X[[x]] | |
}) | |
if (isTRUE(drop)) { | |
cbind(indt, do.call(cbind, X))[, eval(splitCols) := NULL][] | |
} else { | |
cbind(indt, do.call(cbind, X)) | |
} | |
} else { | |
indt <- indt[rep(sequence(nrow(indt)), each = Ncol)] | |
X <- lapply(X, function(y) as.vector(t(y))) | |
indt[, eval(splitCols) := lapply(X, unlist, use.names = FALSE)][] | |
} | |
} else { | |
Rep <- vapply(X[[1]], length, integer(1L)) | |
indt <- indt[rep(sequence(nrow(indt)), Rep)] | |
indt[, eval(splitCols) := lapply(X, unlist, use.names = FALSE)][] | |
} | |
} |
@harmonica2, I'm not sure that I see the need for such a feature, but once setDF
is implemented in "data.table" it should be easy enough to incorporate in the function.
@sidpat, I've never actually figured out how to incorporate progress bars in my functions. If you have a lead on how to do so, please feel free to fork the function and try it out. I'd love to know what you find out!
Sorry for the late responses--GitHub doesn't notify us on Gist comments :-(
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Surprising fast. Can you add the progress bar functionality? since have a very large dataset to process. Thanks