-
-
Save mrgloom/6620665 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from itertools import product | |
from sklearn.decomposition import RandomizedPCA | |
from sklearn.datasets import fetch_mldata | |
from sklearn.utils import shuffle | |
mnist = fetch_mldata("MNIST original") | |
X_train, y_train = mnist.data[:60000] / 255., mnist.target[:60000] | |
X_train, y_train = shuffle(X_train, y_train) | |
X_train, y_train = X_train[:5000], y_train[:5000] # lets subsample a bit for a first impression | |
pca = RandomizedPCA(n_components=2) | |
fig, plots = plt.subplots(10, 10) | |
fig.set_size_inches(50, 50) | |
plt.prism() | |
for i, j in product(xrange(10), repeat=2): | |
if i > j: | |
continue | |
X_ = X_train[(y_train == i) + (y_train == j)] | |
y_ = y_train[(y_train == i) + (y_train == j)] | |
X_transformed = pca.fit_transform(X_) | |
plots[i, j].scatter(X_transformed[:, 0], X_transformed[:, 1], c=y_) | |
plots[i, j].set_xticks(()) | |
plots[i, j].set_yticks(()) | |
plots[j, i].scatter(X_transformed[:, 0], X_transformed[:, 1], c=y_) | |
plots[j, i].set_xticks(()) | |
plots[j, i].set_yticks(()) | |
if i == 0: | |
plots[i, j].set_title(j) | |
plots[j, i].set_ylabel(j) | |
#plt.scatter(X_transformed[:, 0], X_transformed[:, 1], c=y_) | |
plt.tight_layout() | |
plt.savefig("mnist_pairs.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment