This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Mathieu Blondel, September 2010 | |
# License: BSD 3 clause | |
import numpy as np | |
from numpy import linalg | |
import cvxopt | |
import cvxopt.solvers | |
def linear_kernel(x1, x2): | |
return np.dot(x1, x2) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.datasets import fetch_mldata | |
from sklearn.decomposition import FastICA, PCA | |
from sklearn.cluster import KMeans | |
# fetch natural image patches | |
image_patches = fetch_mldata("natural scenes data") | |
X = image_patches.data |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# | |
# K-means clustering using Lloyd's algorithm in pure Python. | |
# Written by Lars Buitinck. This code is in the public domain. | |
# | |
# The main program runs the clustering algorithm on a bunch of text documents | |
# specified as command-line arguments. These documents are first converted to | |
# sparse vectors, represented as lists of (index, value) pairs. | |
from collections import defaultdict |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.grid_search import GridSearchCV | |
from sklearn.cross_validation import StratifiedKFold | |
def main(): | |
mnist = fetch_mldata("MNIST original") | |
X_all, y_all = mnist.data/255., mnist.target | |
print("scaling") | |
X = X_all[:60000, :] | |
y = y_all[:60000] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from itertools import product | |
from sklearn.decomposition import RandomizedPCA | |
from sklearn.datasets import fetch_mldata | |
from sklearn.utils import shuffle | |
mnist = fetch_mldata("MNIST original") | |
X_train, y_train = mnist.data[:60000] / 255., mnist.target[:60000] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from matplotlib import pyplot as plt | |
from scipy.optimize import fmin_l_bfgs_b as bfgs | |
from scipy.io import loadmat | |
class params: | |
''' | |
A wrapper around weights and biases | |
for an autoencoder |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from numpy import loadtxt, zeros, ones, array, linspace, logspace | |
from pylab import scatter, show, title, xlabel, ylabel, plot, contour | |
#Evaluate the linear regression | |
def compute_cost(X, y, theta): | |
''' | |
Comput cost for linear regression | |
''' | |
#Number of training samples |
NewerOlder