Last active
October 17, 2021 05:50
-
-
Save mrinath123/3fdf8ada0c7fa83d4e47b0cd0f390c05 to your computer and use it in GitHub Desktop.
Convmixer Architecture
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
#torch.__version__ should be 1.9 | |
class ConvMixer(nn.Module): | |
def __init__(self,no_of_op_channels , depth , kernal , patch_size ,output ): | |
super().__init__() | |
self.o = no_of_op_channels | |
self.d = depth | |
self.k = kernal | |
self.p = patch_size | |
self.n = output | |
self.bn = nn.BatchNorm2d(self.o) | |
self.cnn1 = nn.Conv2d(3 , self.o , (self.p , self.p) , stride=self.p) | |
self.bn1 = nn.BatchNorm2d(self.o) | |
self.cnn2 = nn.Conv2d(self.o , self.o , (self.k , self.k) , groups=self.o , padding="same") | |
self.bn2 = nn.BatchNorm2d(self.o) | |
self.cnn3 = nn.Conv2d(self.o , self.o , (1,1)) | |
self.pool = nn.AdaptiveAvgPool2d((1,1)) | |
self.fc = nn.Linear(self.o , self.n) | |
def forward(self , x): | |
x = self.bn(F.gelu(self.cnn1(x))) | |
for i in range(self.d): | |
x = self.bn1(F.gelu(self.cnn2(x)))+ x #residual step and depthwise convolution | |
x = self.bn2(F.gelu(self.cnn3(x))) #pointwise convolution | |
x = self.pool(x) | |
x = x.view(x.shape[0],-1) | |
x = self.fc(x) | |
return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment