Created
February 10, 2012 21:23
-
-
Save mrmekon/1792990 to your computer and use it in GitHub Desktop.
Embedly application puzzle
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import urllib2 | |
from xml.etree.ElementTree import XMLParser | |
import numpy | |
class DepthCounter: | |
depthdict = {} | |
def __init__(self): | |
self.classdepth = 0 | |
self.depth = 0 | |
self.depthdict = {} | |
def start(self, tag, attrib): | |
self.classdepth += 1 | |
def end(self, tag): | |
self.classdepth -= 1 | |
def data(self, data): | |
if self.classdepth not in self.depthdict: | |
self.depthdict[self.classdepth] = 0 | |
self.depthdict[self.classdepth] += 1 | |
def close(self): | |
return self.depthdict | |
page = urllib2.urlopen("http://apply.embed.ly/static/data/2.html") | |
contents = page.read() | |
cntr = DepthCounter() | |
parser = XMLParser(target=cntr) | |
parser.feed(contents) | |
cntdict = parser.close() | |
depthlisttree = [[x[0]]*x[1] for x in cntdict.iteritems() if x[1] > 0] | |
depthlist = [x for sublist in depthlisttree for x in sublist] | |
depthlistzero = [x-1 for x in depthlist] | |
print numpy.std(depthlistzero) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import factorial | |
def sum_factorial_digits(n): | |
return sum([int(x) for x in str(factorial(n))]) | |
print min([x for x in xrange(1000) if sum_factorial_digits(x) == 8001]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
def wordfreq(n): | |
startn = n | |
div = 1 | |
result = [] | |
while (n > 0): | |
div += 1 | |
result.append(n) | |
if (n < 1.0): | |
break | |
n = float(startn)/div | |
return result | |
def count_words_up_to_limit(list, limit): | |
cum = 0 | |
idx = 0 | |
while cum < limit: | |
cum += list[idx] | |
idx += 1 | |
return idx | |
unique_words = [x for x in xrange(1000) if len(wordfreq(x)) == 900] | |
if not unique_words: | |
sys.exit(1) | |
unique_words = unique_words[0] | |
count_list = wordfreq(unique_words) | |
totalwords = sum(count_list) | |
halfwords = totalwords / 2 | |
print count_words_up_to_limit(count_list, halfwords) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment