Created
September 19, 2012 15:49
-
-
Save mrocklin/3750410 to your computer and use it in GitHub Desktop.
The computation of the Kalman filter over two computers using MPI-enabled Theano.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano | |
from theano.tensor.io import send, recv, mpi_cmps | |
import theano.sandbox.linalg as linalg | |
from theano.gof.sched import sort_schedule_fn | |
from time import time | |
dot = theano.tensor.dot | |
dtype = 'float32' | |
n = 500 | |
run = False | |
# Set up a linker that orders nodes to overlap computation and communication | |
mpi_scheduler = sort_schedule_fn(*mpi_cmps) | |
mpi_linker = theano.OpWiseCLinker(schedule=mpi_scheduler) | |
mpi_mode = theano.Mode(linker=mpi_linker) | |
# initialize MPI | |
from mpi4py import MPI | |
import numpy as np | |
comm = MPI.COMM_WORLD | |
rank = comm.Get_rank() | |
if rank == 0 or not run: | |
# Create some input variables | |
mu = theano.tensor.matrix('mu') | |
Sigma = theano.tensor.matrix('Sigma') | |
H = theano.tensor.matrix('H') | |
R = theano.tensor.matrix('R') | |
data = theano.tensor.matrix('data') | |
input_shapes = { mu: (n, 1), | |
Sigma: (n, n), | |
H: (n, n), | |
R: (n, n), | |
data: (n, 1)} | |
# Some intermediate variables | |
A = dot(Sigma, H.T) | |
B = R + dot(H, dot(Sigma, H.T)) | |
new_mu = mu + dot(A, linalg.solve(B, dot(H, mu) - data)) | |
new_mu.name = "updated_mu" | |
# Send data to 1 | |
receipts = send(H, 1, 1), send(B, 1, 2), send(Sigma, 1, 3), send(A, 1, 4) | |
# Get back the work that 1 did | |
new_Sigma = recv((n, n), dtype, 1, 5) | |
# Compile | |
inputs_0 = (mu, Sigma, H, R, data) | |
outputs_0 = (new_mu, new_Sigma) + receipts | |
f0 = theano.function(inputs_0, outputs_0, mode=mpi_mode) | |
nodes0 = f0.maker.linker.make_all()[-1] # for debug | |
if run: | |
# Generate random inputs | |
numeric_inputs = [np.random.rand(*input_shapes[inp]).astype(dtype) | |
for inp in inputs_0] | |
a, b, _, _, _, _ = f0(*numeric_inputs) # warm start | |
# Run and time | |
comm.barrier() | |
starttime = time() | |
a, b, _, _, _, _ = f0(*numeric_inputs) | |
comm.barrier() | |
endtime = time() | |
print endtime - starttime | |
if rank == 1 or not run: | |
# Receive some data from 0 | |
H = recv((n, n), dtype, 0, 1) | |
B = recv((n, n), dtype, 0, 2) | |
Sigma = recv((n, n), dtype, 0, 3) | |
A = recv((n, n), dtype, 0, 4) | |
# Do some computation | |
new_Sigma = Sigma - dot(dot(A, linalg.solve(B, H)), Sigma) | |
new_Sigma.name = "updated_Sigma" | |
# Send it back to 0 | |
receipt = send(new_Sigma, 0, 5) | |
# compile locally using Theano | |
inputs_1 = () | |
outputs_1 = (receipt, ) | |
f1 = theano.function(inputs_1, outputs_1, mode=mpi_mode) | |
nodes1 = f1.maker.linker.make_all()[-1] # for debug | |
if run: | |
_ = f1() # warm start | |
comm.barrier() | |
_ = f1() | |
comm.barrier() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
MPISend and MPIRecv are asynchronous. They set everything up but take no time themselves. They are done as soon as possible.
MPI*Waits block until the transfer is complete. They are done as late as possible.
MPI transfers are given unique identifiers (tags). Tags are used to break ties. This helps to prevent deadlocks.