Created
March 16, 2015 05:30
-
-
Save mrocklin/4f6d06a2ccc03731dd5f to your computer and use it in GitHub Desktop.
Serialization benchmark
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
df = pd.DataFrame({'text': [str(i % 1000) for i in range(1000000)], | |
'numbers': range(1000000)}) | |
import pickle | |
import cPickle | |
import json | |
from functools import partial | |
from time import time | |
def timeit(func, n=5): | |
start = time() | |
for i in range(n): | |
func() | |
end = time() | |
return (end - start) / n | |
def csvdumps(s): | |
s.to_csv('foo') | |
return 'foo' | |
def csvloads(fn): | |
return pd.read_csv(fn) | |
def hdfdumps(s): | |
s.to_hdf('foo', 'bar', mode='w') | |
return ('foo', 'bar') | |
def hdfloads(path): | |
return pd.read_hdf('foo', 'bar') | |
def jsonloads(text): | |
index, values = json.loads(text) | |
return pd.Series(values, index=index) | |
keys = ['json-no-index', 'json', 'pickle', 'pickle-p2', 'cPickle', 'cPickle-p2', 'msgpack', 'csv', 'hdfstore'] | |
d = {'pickle': [pickle.loads, pickle.dumps], | |
'cPickle': [cPickle.loads, cPickle.dumps], | |
'pickle-p2': [pickle.loads, partial(pickle.dumps, protocol=2)], | |
'cPickle-p2': [cPickle.loads, partial(cPickle.dumps, protocol=2)], | |
'msgpack': [pd.read_msgpack, pd.Series.to_msgpack], | |
'csv': [csvloads, csvdumps], | |
'hdfstore': [hdfloads, hdfdumps], | |
'json-no-index': [json.loads, lambda x: json.dumps(list(x))], | |
'json': [jsonloads, lambda x: json.dumps([list(x.index), list(x)])]} | |
result = dict() | |
for name, (loads, dumps) in d.items(): | |
text = dumps(df.text) | |
numbers = dumps(df.numbers) | |
result[name] = {'text': {'dumps': timeit(lambda: dumps(df.text)), | |
'loads': timeit(lambda: loads(text))}, | |
'numbers': {'dumps': timeit(lambda: dumps(df.numbers)), | |
'loads': timeit(lambda: loads(numbers))}} | |
######## | |
# Plot # | |
######## | |
# Much of this was taken from | |
# http://nbviewer.ipython.org/gist/mwaskom/886b4e5cb55fed35213d | |
# by Michael Waskom | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
sns.set(style="whitegrid", font_scale=1.3) | |
w, h = 7, 7 | |
f, (left, right) = plt.subplots(nrows=1, ncols=2, sharex=True, figsize=(w*2, h), squeeze=True) | |
df = pd.DataFrame({'loads': [result[key]['text']['loads'] for key in keys], | |
'dumps': [result[key]['text']['dumps'] for key in keys], | |
'storage': keys}) | |
df = pd.melt(df, "storage", value_name="duration", var_name="operation") | |
sns.barplot("duration", "storage", "operation", data=df, ax=left) | |
left.set(xlabel="Duration (s)", ylabel="") | |
sns.despine(bottom=True) | |
left.set_title('Cost to Serialize Text') | |
left.legend(loc="lower center", ncol=2, frameon=True, title="operation") | |
df = pd.DataFrame({'loads': [result[key]['numbers']['loads'] for key in keys], | |
'dumps': [result[key]['numbers']['dumps'] for key in keys], | |
'storage': keys}) | |
df = pd.melt(df, "storage", value_name="duration", var_name="operation") | |
sns.barplot("duration", "storage", "operation", data=df, ax=right) | |
right.set(xlabel="Duration (s)", ylabel="") | |
sns.despine(bottom=True) | |
right.set_title('Cost to Serialize Numerical Data') | |
right.legend(loc="lower center", ncol=2, frameon=True, title="operation") | |
plt.savefig('../images/serialize.png') | |
f, ax = plt.subplots(nrows=1, ncols=1, sharex=True, figsize=(w, h), squeeze=True) | |
keys2 = ['pickle-p2', 'cPickle-p2', 'msgpack', 'hdfstore'] | |
df = pd.DataFrame({'loads': [result[key]['numbers']['loads'] for key in keys2], | |
'dumps': [result[key]['numbers']['dumps'] for key in keys2], | |
'storage': keys2}) | |
df = pd.melt(df, "storage", value_name="duration", var_name="operation") | |
sns.barplot("duration", "storage", "operation", data=df, ax=ax) | |
ax.set(xlabel="Duration (s)", ylabel="") | |
sns.despine(bottom=True) | |
ax.set_title('Cost to Serialize Numerical Data') | |
ax.legend(loc="lower center", ncol=2, frameon=True, title="operation") | |
plt.savefig('../images/serialize-subset.png') | |
df = pd.DataFrame({'loads': [result[key]['text']['loads'] for key in keys], | |
'dumps': [result[key]['text']['dumps'] for key in keys], | |
'storage': keys}) | |
df2 = df.copy() | |
start = time() | |
df2['text'] = df2['text'].astype('category') | |
end = time() | |
categories = {'convert': end - start, | |
'text': timeit(lambda: cPickle.loads(cPickle.dumps(df.text, protocol=2))), | |
'categories': timeit(lambda: cPickle.loads(cPickle.dumps(df2.text, protocol=2)))} | |
print pd.DataFrame(pd.Series(categories, name='seconds', index=['text', 'convert', 'categories'])).to_html() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment