Created
June 29, 2017 13:22
-
-
Save mschauer/38e8d25bef48edc0a51391a790541b31 to your computer and use it in GitHub Desktop.
gamma.jl
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
abstract type LevyProcess{T} <: ContinuousTimeProcess{T} end | |
""" | |
GammaProcess | |
A *GammaProcess* with jump rate `γ` and inverse jump size `λ` has increments `Gamma(t*γ, 1/λ)` and Levy measure | |
```math | |
ν(x)=γ x^{-1}\\exp(-λ x), | |
``` | |
Here `Gamma(α,θ)` is the Gamma distribution in julia's parametrization with shape parameter `α` and scale `θ` | |
""" | |
struct GammaProcess <: LevyProcess{Float64} | |
γ::Float64 | |
λ::Float64 | |
end | |
struct VarianceGammaProcess <: LevyProcess{Float64} | |
θ::Float64 | |
σ::Float64 | |
ν::Float64 | |
end | |
struct VarianceGamma | |
θ::Float64 | |
σ::Float64 | |
t::Float64 | |
ν::Float64 | |
end | |
struct GammaBridge <: ContinuousTimeProcess{Float64} | |
t::Float64;v::Float64 | |
P::GammaProcess | |
end | |
function sample{T}(tt::AbstractVector{Float64}, P::LevyProcess{T}, x1=zero(T)) | |
tt = collect(tt) | |
yy = zeros(T,length(tt)) | |
yy[1] = x = x1 | |
for i in 2:length(tt) | |
x = x + rand(increment(tt[i]-tt[i-1], P)) | |
yy[i] = x | |
end | |
SamplePath{T}(tt, yy) | |
end | |
increment(t, P::GammaProcess) = Gamma(t*P.γ, 1/P.λ) | |
lp(s, x, t, y, P::GammaProcess) = logpdf(increment(t-s, P), y-x) | |
increment(t, P::VarianceGammaProcess) = VarianceGamma(P.θ, P.σ, t, P.ν) | |
function rand(P::VarianceGamma) | |
Z = randn() | |
G = rand(Gamma(P.t/P.ν, P.ν)) | |
P.θ*G + P.σ*sqrt(G)*Z | |
end | |
function sample(tt::AbstractVector{Float64}, P::GammaBridge, x1::Float64 = 0.) | |
tt = collect(tt) | |
t = P.t | |
r = searchsorted(tt, t) | |
if isempty(r) | |
tt = Float64[tt[1:last(r)]; t; tt[first(r):end]] | |
end | |
X = sample(tt, P.P, x1) | |
yy = X.yy | |
yy[:] = yy ./ yy[first(r)] | |
if isempty(r) | |
tt = [tt[1:last(r)]; tt[first(r)+1:end]] | |
yy = [yy[1:last(r)]; yy[first(r)+1:end]] | |
end | |
SamplePath{Float64}(tt, yy) | |
end | |
""" | |
LocalGammaProcess | |
""" | |
struct LocalGammaProcess | |
P::GammaProcess | |
ϵ | |
alpha | |
x | |
k | |
end | |
""" | |
inverse jump size compared to gamma process | |
""" | |
function bigλ(x, P::LocalGammaProcess) | |
x <= P.ϵ && return 0. | |
x >= P.x && return -alpha[i] | |
i = floor(Int, P.k*(x-P.ϵ)/(P.x-P.ϵ)) | |
-alpha[i] | |
end | |
function comp(P::LocalGammaProcess) | |
s = 0.0 | |
for k in 1:P.k-1 | |
dx = (P.x- P.ϵ)/(k-1) | |
s = s + P.γ*(expint(1, P.alpha[k]*( P.ϵ + (k-1)*dx)) - expint(1, P.alpha[k+1]*( P.ϵ + k*dx))) | |
end | |
s = s + P.γ*(expint(1, P.alpha[P.k]*(P.x))) # might be removed | |
end | |
""" | |
Up to proportionality | |
""" | |
function llikelihood(X::SamplePath, P::LocalGammaProcess) | |
ll = 0. | |
for i in 2:length(X.tt) | |
dt = X.tt[i]-X.tt[i] | |
ll += bigλ(X.yy-X.xx, P) | |
end | |
ll - (X.tt[end]-X.tt[1])*comp(P) | |
end | |
export LocalGamma | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment