Last active
August 29, 2015 14:20
-
-
Save mschauer/c325ff89cd378fe7ecd6 to your computer and use it in GitHub Desktop.
Shape preservation for blocked cholesky
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Base: ctranspose, *, -, *, \, zero, showlimited, print, show, writemime, showcompact, showcompact_lim, inv, one | |
import Base.display | |
import Base.LinAlg.chol! | |
import Base.LinAlg.chol | |
const Dadd = Dict( | |
('L','L') => 'L', | |
('U','U') => 'U', | |
('L','U') => 'A', | |
('A','L') => 'A', | |
('A','U') => 'A', | |
('A','A') => 'A', | |
('0','L') => 'L', | |
('0','U') => 'U', | |
('0','A') => 'A', | |
('0','F') => 'F', | |
('0','0') => '0', | |
('A', 'F') => 'F', | |
('F', 'F') => 'F' | |
) | |
const Dmul = Dict( | |
('L','L') => 'L', | |
('U','U') => 'U', | |
('L','U') => 'A', | |
('L','A') => 'A', | |
('A','U') => 'A', | |
('A', '0') => '0', | |
('F', '0') => '0', | |
('L', '0') => '0', | |
('U', '0') => '0', | |
('0', '0') => '0', | |
('0', 'A') => '0', | |
('0', 'L') => '0', | |
('0', 'F') => '0', | |
('0', 'U') => '0', | |
('F', 'F') => 'F', | |
('A', 'A') => 'F', | |
) | |
const Dldiv = Dict( | |
('L','A') => 'A', | |
('L','0') => '0', | |
('L','L') => 'L', | |
('L','F') => 'F', | |
('F','F') => 'F', | |
('F','0') => '0', | |
('F','1') => 'F', | |
('L','1') => 'L', | |
('A','1') => 'F', | |
('U','1') => 'U', | |
('A','A') => 'A', | |
) | |
type Ring | |
x::Float64 | |
c::Char | |
end | |
zero(::Type{Ring}) = Ring(0.0, '0') | |
one(::Type{Ring}) = Ring(1, 'A') | |
print(io::IO, r::Ring) = print(io,r.c) | |
showlimited(io::IO, r::Ring) = print(io, r) | |
writemime(io::IO, ::MIME"text/plain", r::Ring) = print(io, r) | |
showcompact_lim(io::IO, r::Ring) = print(io, r) | |
showcompact(io::IO, r::Ring) = print(io, r) | |
ctranspose(r::Ring) = Ring(r.x, Dict('L'=>'U', 'U'=>'L', 'A'=>'A', '0'=>'0', 'F'=>'F')[r.c]) | |
+(r1::Ring, r2::Ring) = Ring(r1.x + r2.x, Dadd[minmax(r1.c, r2.c)]) | |
-(r1::Ring, r2::Ring) = Ring(r1.x - r2.x, Dadd[minmax(r1.c, r2.c)]) | |
*(r1::Ring, r2::Ring) = Ring(r1.x * r2.x, Dmul[r1.c, r2.c]) | |
*(f1::Float64, r2::Ring) = Ring(f1 * r2.x, r2.c) | |
\(r1::Ring, r2::Ring) = Ring(r1.x \ r2.x, Dldiv[r1.c, r2.c]) | |
inv(r::Ring) = Ring(inv(r.x), Dldiv[r.c, '1']) | |
function root(r::Ring) | |
# assert(r.c == 'A' || r.c == '0') | |
Ring(sqrt(r.x), Dict('A'=>'U', '0'=>'0', 'F'=>'F')[r.c]) | |
end | |
chol(r::Ring, v) = chol!(r, v) | |
chol(r::Ring) = chol!(r, Val{:L}) | |
function chol!(r::Ring, ::Type{Val{:U}}) | |
Ring(sqrt(r.x), Dict('A'=>'U', '0'=>'0', 'F'=>'F')[r.c]) | |
end | |
function chol!(r::Ring, ::Type{Val{:L}}) | |
Ring(sqrt(r.x), Dict('A'=>'L', '0'=>'0', 'F'=>'F')[r.c]) | |
end | |
L = Ring[Ring(3.,'L') Ring(1.,'L') | |
Ring(1.,'L') Ring(3.,'L')] | |
A = L*(L') | |
chol!(copy(A)) | |
F = Float64[ | |
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | |
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | |
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | |
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | |
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | |
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 | |
0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 | |
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 | |
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 | |
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 | |
1 2 1 1 1 1 1 1 1 2 1 1 2 1 9 0 0 | |
2 1 1 1 1 1 1 1 2 1 1 2 1 2 7 9 0 | |
1 1 1 1 1 1 2 1 1 2 1 9 1 1 7 4 9 | |
] | |
n = size(F,1) | |
R = randn(n,n) | |
F = R .* F | |
U = F * F' + n*eye(n) | |
A2 = map(x-> Ring(x, x != 0 ? 'A':'0'), U) | |
L2 = chol!(copy(A2)) | |
display(A2) | |
display(L2) | |
UU = rand(n*n, n*n) | |
1(abs(chol!(UU*UU' .* kron(U, U) + kron(U,U) + 100*n*n*eye(n*n))) .> eps() ) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks for the link. I like the example and surprisingly enough, in this week, I've actually looked at the shape preserving property of the arrow matrix under Cholesky/LDLt factorizations. We might need the backward Cholesky at some point such that we can get the same property when the arrowhead is to the upper left.