Last active
August 29, 2015 14:23
-
-
Save mschubert/ae2a385aeddd0e89d759 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# loading the table, converting it to an expression matrix | |
# | |
df = read.table( | |
"GBM.rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes__data.data.txt", | |
header=TRUE, sep="\t", stringsAsFactors=FALSE) | |
expr = data.matrix(df[2:nrow(df), df[1,]=="raw_count"]) | |
rownames(expr) = df[2:nrow(df), 1] | |
# | |
# filtering the row- and column names to what we want | |
# | |
colnames(expr) = substr(colnames(expr), 15, 15) | |
rownames(expr) = sub("\\|.*$", "", rownames(expr)) | |
expr = expr[rownames(expr) != "?",] | |
# | |
# transform the raw read counts using voom | |
# -- with this, we can use standard linear modeling tools | |
# | |
# if you start with a .bam file instead of the TCGA text file, | |
# there are more specific tools to get differential expression | |
# -- see DESeq2, edgeR packages | |
# | |
library(limma) | |
vexpr = voom(expr)$E | |
axpr = avereps(vexpr) # average if multiple measurements on same gene | |
# | |
# use lmFit to compute differential expression | |
# | |
design = model.matrix(~ 0 + as.factor(colnames(axpr))) | |
colnames(design) = c("primary", "recurrent") | |
fit.1 = lmFit(axpr, design) | |
contrast = makeContrasts("primary-recurrent", levels=design) | |
fit.2 = contrasts.fit(fit.1, contrast) | |
fit.3 = eBayes(fit.2) | |
# | |
# make a summary table ordered by p-value | |
# | |
result = data.frame( | |
gene = rownames(fit.3), | |
p.value = fit.3$p.value[,1], | |
fold_change = fit.3$coefficients[,1], | |
stringsAsFactors = FALSE | |
) | |
result$adj.p = p.adjust(result$p.value, method="fdr") | |
result = result[order(result$p.value),] | |
cat(result$gene[result$adj.p < 0.01], sep="\n") # print all genes w/ FDR<1% |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment