Created
October 25, 2011 21:29
-
-
Save mschuetz/1314356 to your computer and use it in GitHub Desktop.
simple bayesian spam classifier using laplace smoothing. quickly thrown together but i'll try to polish this tomorrow.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def sum(arr) | |
res = 0 | |
arr.each{|e| res+=e} | |
res | |
end | |
def mult(arr) | |
res = 1 | |
arr.each{|e| res*=e} | |
res | |
end | |
$training = { | |
:spam=>["offer is secret", "click secret link", "secret sports link"], | |
:ham=>["play sports today", "went play sports", "secret sports event", "sports is today", "sports costs money"] | |
} | |
$LSk = 1.0 | |
$dict = {} | |
$global_dict = {} | |
$global_dict.default=0.0 | |
$priors={} | |
$total_words={} | |
$total_words.default=0 | |
$total_words_all=0 | |
total_messages=0 | |
$training.each_value{|messages| total_messages += messages.size} | |
$training.each_pair{|klass, messages| | |
$dict[klass] = {} | |
$dict[klass].default=0.0 | |
messages.each{|msg| | |
msg.split.each{|word| | |
$dict[klass][word]+=1 | |
$global_dict[word]+=1 | |
$total_words[klass]+=1 | |
} | |
} | |
$total_words_all+=$total_words[klass] | |
$priors[klass] = (messages.size.to_f + $LSk) / (total_messages.to_f + $LSk * $training.keys.size) | |
} | |
p $dict | |
p $priors | |
def prob(word, klass) | |
($dict[klass][word] + $LSk) / ($total_words[klass] + $LSk * $global_dict.size) | |
end | |
def classify(message) | |
res={} | |
$training.each_key{|klass| | |
words = message.split | |
num = mult(words.map{|w| prob(w, klass)}) * $priors[klass] | |
denom = 0.0 | |
$training.each_key{|kk| | |
denom += mult(words.map{|w| prob(w, kk)}) * $priors[kk] | |
} | |
res[klass] = num/denom | |
} | |
res | |
end | |
puts prob("today", :spam) | |
puts prob("today", :ham) | |
p classify("today is secret") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment