Created
June 20, 2015 06:58
-
-
Save mshr-h/e4303914e7f2a8d6c573 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pysqlite2 import dbapi2 as sqlite | |
import re | |
import math | |
def getwords(doc): | |
splitter = re.compile('\\W*') | |
# Split the words by non-alpha characters | |
words = [s.lower() for s in splitter.split(doc) | |
if len(s) > 2 and len(s) < 20] | |
# Return the unique set of words only | |
return dict([(w, 1) for w in words]) | |
class classifier: | |
def __init__(self, getfeatures, filename=None): | |
# Counts of feature/category combinations | |
self.fc = {} | |
# Counts of documents in each category | |
self.cc = {} | |
self.getfeatures = getfeatures | |
def setdb(self, dbfile): | |
self.con = sqlite.connect(dbfile) | |
self.con.execute('create table if not exists fc(feature,category,count)') | |
self.con.execute('create table if not exists cc(category,count)') | |
def incf(self, f, cat): | |
count = self.fcount(f, cat) | |
if count == 0: | |
self.con.execute("insert into fc values ('%s','%s',1)" | |
% (f, cat)) | |
else: | |
self.con.execute( | |
"update fc set count=%d where feature='%s' and category='%s'" | |
% (count + 1, f, cat)) | |
def fcount(self, f, cat): | |
res = self.con.execute( | |
'select count from fc where feature="%s" and category="%s"' | |
% (f, cat)).fetchone() | |
if res == None: | |
return 0 | |
else: | |
return float(res[0]) | |
def incc(self, cat): | |
count = self.catcount(cat) | |
if count == 0: | |
self.con.execute("insert into cc values ('%s',1)" % (cat)) | |
else: | |
self.con.execute("update cc set count=%d where category='%s'" | |
% (count + 1, cat)) | |
def catcount(self, cat): | |
res = self.con.execute('select count from cc where category="%s"' | |
% (cat)).fetchone() | |
if res == None: | |
return 0 | |
else: | |
return float(res[0]) | |
def categories(self): | |
cur = self.con.execute('select category from cc') | |
return [d[0] for d in cur] | |
def totalcount(self): | |
res = self.con.execute('select sum(count) from cc').fetchone() | |
if res == None: | |
return 0 | |
return res[0] | |
def train(self, item, cat): | |
features = self.getfeatures(item) | |
# Increment the count for every feature with this category | |
for f in features: | |
self.incf(f, cat) | |
# Increment the count for this category | |
self.incc(cat) | |
self.con.commit() | |
def fprob(self, f, cat): | |
if self.catcount(cat) == 0: | |
return 0 | |
# The total number of times this feature appeared in this | |
# category divided by the total number of items in this category | |
return self.fcount(f, cat) / self.catcount(cat) | |
def weightedprob(self, f, cat, prf, weight=1.0, ap=0.5): | |
# Calculate current probability | |
basicprob = prf(f, cat) | |
# Count the number of times this feature has appeared in | |
# all categories | |
totals = sum([self.fcount(f, c) for c in self.categories()]) | |
# Calculate the weighted average | |
bp = ((weight * ap) + (totals * basicprob)) / (weight + totals) | |
return bp | |
class naivebayes(classifier): | |
def __init__(self, getfeatures): | |
classifier.__init__(self, getfeatures) | |
self.thresholds = {} | |
def docprob(self, item, cat): | |
features = self.getfeatures(item) | |
# Multiply the probabilities of all the features together | |
p = 1 | |
for f in features: | |
p *= self.weightedprob(f, cat, self.fprob) | |
return p | |
def prob(self, item, cat): | |
catprob = self.catcount(cat) / self.totalcount() | |
docprob = self.docprob(item, cat) | |
return docprob * catprob | |
def setthreshold(self, cat, t): | |
self.thresholds[cat] = t | |
def getthreshold(self, cat): | |
if cat not in self.thresholds: | |
return 1.0 | |
return self.thresholds[cat] | |
def classify(self, item, default=None): | |
probs = {} | |
# Find the category with the highest probability | |
max = 0.0 | |
for cat in self.categories(): | |
probs[cat] = self.prob(item, cat) | |
if probs[cat] > max: | |
max = probs[cat] | |
best = cat | |
# Make sure the probability exceeds threshold*next best | |
for cat in probs: | |
if cat == best: | |
continue | |
if probs[cat] * self.getthreshold(best) > probs[best]: | |
return default | |
return best | |
class fisherclassifier(classifier): | |
def cprob(self, f, cat): | |
# The frequency of this feature in this category | |
clf = self.fprob(f, cat) | |
if clf == 0: | |
return 0 | |
# The frequency of this feature in all the categories | |
freqsum = sum([self.fprob(f, c) for c in self.categories()]) | |
# The probability is the frequency in this category divided by | |
# the overall frequency | |
p = clf / (freqsum) | |
return p | |
def fisherprob(self, item, cat): | |
# Multiply all the probabilities together | |
p = 1 | |
features = self.getfeatures(item) | |
for f in features: | |
p *= (self.weightedprob(f, cat, self.cprob)) | |
# Take the natural log and multiply by -2 | |
fscore = -2 * math.log(p) | |
# Use the inverse chi2 function to get a probability | |
return self.invchi2(fscore, len(features) * 2) | |
def invchi2(self, chi, df): | |
m = chi / 2.0 | |
sum = term = math.exp(-m) | |
for i in range(1, df // 2): | |
term *= m / i | |
sum += term | |
return min(sum, 1.0) | |
def __init__(self, getfeatures): | |
classifier.__init__(self, getfeatures) | |
self.minimums = {} | |
def setminimum(self, cat, min): | |
self.minimums[cat] = min | |
def getminimum(self, cat): | |
if cat not in self.minimums: | |
return 0 | |
return self.minimums[cat] | |
def classify(self, item, default=None): | |
# Loop through looking for the best result | |
best = default | |
max = 0.0 | |
for c in self.categories(): | |
p = self.fisherprob(item, c) | |
# Make sure it exceeds its minimum | |
if p > self.getminimum(c) and p > max: | |
best = c | |
max = p | |
return best | |
def sampletrain(cl): | |
cl.train('Nobody owns the water.', 'good') | |
cl.train('the quick rabbit jumps fences', 'good') | |
cl.train('buy pharmaceuticals now', 'bad') | |
cl.train('make quick money at the online casino', 'bad') | |
cl.train('the quick brown fox jumps', 'good') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment