Skip to content

Instantly share code, notes, and snippets.

@mshr-h
Created June 20, 2015 06:58
Show Gist options
  • Save mshr-h/e4303914e7f2a8d6c573 to your computer and use it in GitHub Desktop.
Save mshr-h/e4303914e7f2a8d6c573 to your computer and use it in GitHub Desktop.
from pysqlite2 import dbapi2 as sqlite
import re
import math
def getwords(doc):
splitter = re.compile('\\W*')
# Split the words by non-alpha characters
words = [s.lower() for s in splitter.split(doc)
if len(s) > 2 and len(s) < 20]
# Return the unique set of words only
return dict([(w, 1) for w in words])
class classifier:
def __init__(self, getfeatures, filename=None):
# Counts of feature/category combinations
self.fc = {}
# Counts of documents in each category
self.cc = {}
self.getfeatures = getfeatures
def setdb(self, dbfile):
self.con = sqlite.connect(dbfile)
self.con.execute('create table if not exists fc(feature,category,count)')
self.con.execute('create table if not exists cc(category,count)')
def incf(self, f, cat):
count = self.fcount(f, cat)
if count == 0:
self.con.execute("insert into fc values ('%s','%s',1)"
% (f, cat))
else:
self.con.execute(
"update fc set count=%d where feature='%s' and category='%s'"
% (count + 1, f, cat))
def fcount(self, f, cat):
res = self.con.execute(
'select count from fc where feature="%s" and category="%s"'
% (f, cat)).fetchone()
if res == None:
return 0
else:
return float(res[0])
def incc(self, cat):
count = self.catcount(cat)
if count == 0:
self.con.execute("insert into cc values ('%s',1)" % (cat))
else:
self.con.execute("update cc set count=%d where category='%s'"
% (count + 1, cat))
def catcount(self, cat):
res = self.con.execute('select count from cc where category="%s"'
% (cat)).fetchone()
if res == None:
return 0
else:
return float(res[0])
def categories(self):
cur = self.con.execute('select category from cc')
return [d[0] for d in cur]
def totalcount(self):
res = self.con.execute('select sum(count) from cc').fetchone()
if res == None:
return 0
return res[0]
def train(self, item, cat):
features = self.getfeatures(item)
# Increment the count for every feature with this category
for f in features:
self.incf(f, cat)
# Increment the count for this category
self.incc(cat)
self.con.commit()
def fprob(self, f, cat):
if self.catcount(cat) == 0:
return 0
# The total number of times this feature appeared in this
# category divided by the total number of items in this category
return self.fcount(f, cat) / self.catcount(cat)
def weightedprob(self, f, cat, prf, weight=1.0, ap=0.5):
# Calculate current probability
basicprob = prf(f, cat)
# Count the number of times this feature has appeared in
# all categories
totals = sum([self.fcount(f, c) for c in self.categories()])
# Calculate the weighted average
bp = ((weight * ap) + (totals * basicprob)) / (weight + totals)
return bp
class naivebayes(classifier):
def __init__(self, getfeatures):
classifier.__init__(self, getfeatures)
self.thresholds = {}
def docprob(self, item, cat):
features = self.getfeatures(item)
# Multiply the probabilities of all the features together
p = 1
for f in features:
p *= self.weightedprob(f, cat, self.fprob)
return p
def prob(self, item, cat):
catprob = self.catcount(cat) / self.totalcount()
docprob = self.docprob(item, cat)
return docprob * catprob
def setthreshold(self, cat, t):
self.thresholds[cat] = t
def getthreshold(self, cat):
if cat not in self.thresholds:
return 1.0
return self.thresholds[cat]
def classify(self, item, default=None):
probs = {}
# Find the category with the highest probability
max = 0.0
for cat in self.categories():
probs[cat] = self.prob(item, cat)
if probs[cat] > max:
max = probs[cat]
best = cat
# Make sure the probability exceeds threshold*next best
for cat in probs:
if cat == best:
continue
if probs[cat] * self.getthreshold(best) > probs[best]:
return default
return best
class fisherclassifier(classifier):
def cprob(self, f, cat):
# The frequency of this feature in this category
clf = self.fprob(f, cat)
if clf == 0:
return 0
# The frequency of this feature in all the categories
freqsum = sum([self.fprob(f, c) for c in self.categories()])
# The probability is the frequency in this category divided by
# the overall frequency
p = clf / (freqsum)
return p
def fisherprob(self, item, cat):
# Multiply all the probabilities together
p = 1
features = self.getfeatures(item)
for f in features:
p *= (self.weightedprob(f, cat, self.cprob))
# Take the natural log and multiply by -2
fscore = -2 * math.log(p)
# Use the inverse chi2 function to get a probability
return self.invchi2(fscore, len(features) * 2)
def invchi2(self, chi, df):
m = chi / 2.0
sum = term = math.exp(-m)
for i in range(1, df // 2):
term *= m / i
sum += term
return min(sum, 1.0)
def __init__(self, getfeatures):
classifier.__init__(self, getfeatures)
self.minimums = {}
def setminimum(self, cat, min):
self.minimums[cat] = min
def getminimum(self, cat):
if cat not in self.minimums:
return 0
return self.minimums[cat]
def classify(self, item, default=None):
# Loop through looking for the best result
best = default
max = 0.0
for c in self.categories():
p = self.fisherprob(item, c)
# Make sure it exceeds its minimum
if p > self.getminimum(c) and p > max:
best = c
max = p
return best
def sampletrain(cl):
cl.train('Nobody owns the water.', 'good')
cl.train('the quick rabbit jumps fences', 'good')
cl.train('buy pharmaceuticals now', 'bad')
cl.train('make quick money at the online casino', 'bad')
cl.train('the quick brown fox jumps', 'good')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment