Last active
October 28, 2023 05:14
-
-
Save mstewartgallus/2d6a281f2c6e34cc982fc5ce502cd1f3 to your computer and use it in GitHub Desktop.
the fixed point of a lax double endofunctor on Span ought to be a category. I can't figure it out though as I get trapped in setoid hell and stuff.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Set Primitive Projections. | |
Require Import Coq.Unicode.Utf8. | |
Reserved Infix "∈" (at level 90, right associativity). | |
Variant fiber {A B} (f: A → B): B → Type := | |
| fiber_intro x: fiber f (f x). | |
Arguments fiber_intro {A B f}. | |
Notation "x ∈ X" := (fiber X x). | |
Definition witness {A B} {X: A → B} {x} (p: x ∈ X): A := | |
match p with | |
| fiber_intro w => w | |
end. | |
Definition p2 {A B} {X: A → B} {x} (p: x ∈ X): X (witness p) = x := | |
match p with | |
| fiber_intro _ => eq_refl | |
end. | |
Module Span. | |
Record t (A B: Type) := { | |
s: Type ; | |
π1: s → A ; | |
π2: s → B ; | |
}. | |
Arguments s {A B}. | |
Arguments π1 {A B}. | |
Arguments π2 {A B}. | |
Variant ext {A B} (P: t A B): A → B → Type := | |
| ext_intro x: ext P (π1 P x) (π2 P x). | |
Definition id A: t A A := | |
{| | |
s := A ; | |
π1 x := x ; | |
π2 x := x ; | |
|}. | |
Definition compose {A B C} (P: t B C) (Q: t A B): t A C := | |
{| | |
s := { x & π1 P x ∈ π2 Q } ; | |
π2 xy := π2 P (projT1 xy) ; | |
π1 xy := π1 Q (witness (projT2 xy)) ; | |
|}. | |
End Span. | |
Module Data. | |
Module Poly. | |
Record t := { | |
s: Type ; | |
π: s → Type ; | |
}. | |
End Poly. | |
Module μ. | |
Inductive t (P: Poly.t) := | |
| sup (g: Poly.s P) (f: Poly.π P g → t P). | |
Definition tag {P} (x: t P): Poly.s P := | |
match x with | |
| sup _ t _ => t | |
end. | |
Definition field {P} (x: t P): Poly.π P (tag x) → t P := | |
match x with | |
| sup _ _ f => f | |
end. | |
End μ. | |
End Data. | |
Module Category. | |
Class t (Obj: Type) := { | |
Mor: Obj → Obj → Type ; | |
id A: Mor A A ; | |
compose {A B C} (f: Mor B C) (g: Mor A B): Mor A C ; | |
compose_id_l {A B} (f: Mor A B): compose (id _) f = f ; | |
compose_id_r {A B} (f: Mor A B): compose f (id _) = f ; | |
compose_assoc {A B C D} (f: Mor C D) (g: Mor B C) (h: Mor A B): compose f (compose g h) = compose (compose f g) h ; | |
}. | |
Module Import CategoryNotations. | |
Infix "∘" := compose (at level 30). | |
End CategoryNotations. | |
Module Poly. | |
Record t := { | |
data: Data.Poly.t ; | |
Category :> Category.t (Data.Poly.s data) ; | |
map {A B: Data.Poly.s data}: Mor A B → Span.t (Data.Poly.π data A) (Data.Poly.π data B) ; | |
map_id {A} x: Span.π1 (map (id A)) x = Span.π2 (map (id A)) x ; | |
map_compose {A B C} (f: Mor B C) (g: Mor A B): Span.s (Span.compose (map f) (map g)) ; | |
map_compose_π1 {A B C} (f: Mor B C) (g: Mor A B) x: | |
Span.π1 (map (f ∘ g)) x = Span.π1 _ (map_compose f g) ; | |
map_compose_π2 {A B C} (f: Mor B C) (g: Mor A B) x: | |
Span.π2 (map (f ∘ g)) x = Span.π2 _ (map_compose f g) ; | |
}. | |
Arguments map {_ A B}. | |
Arguments map_id {_ _}. | |
Arguments map_compose {_ _ _ _}. | |
Arguments map_compose_π1 {_ _ _ _}. | |
Arguments map_compose_π2 {_ _ _ _}. | |
End Poly. | |
Module μ. | |
Inductive t {P: Poly.t} (A B: Data.μ.t (Poly.data P)) := | |
| sup | |
(g: @Mor _ (Poly.Category P) (Data.μ.tag A) (Data.μ.tag B)) | |
(f: ∀ x, t (Data.μ.field A (Span.π1 (Poly.map g) x)) | |
(Data.μ.field B (Span.π2 (Poly.map g) x))). | |
Arguments sup {P A B}. | |
Definition tag {P} {A B: Data.μ.t (Poly.data P)} (x: t A B): Mor _ _ := | |
match x with | |
| sup g _ => g | |
end. | |
Definition field {P} {A B: Data.μ.t (Poly.data P)} | |
(x: t A B): ∀ y, | |
t | |
(Data.μ.field A (Span.π1 (Poly.map (tag x)) y)) | |
(Data.μ.field B (Span.π2 (Poly.map (tag x)) y)) := | |
match x with | |
| sup _ f => f | |
end. | |
Arguments field {P A B}. | |
Notation "s ▹ x , P" := (sup s (fun x => P)) (at level 100). | |
Fixpoint id {P} (A: Data.μ.t (Poly.data P)) {struct A}: t A A := | |
Category.id _ ▹ x, | |
match Poly.map_id x with | |
| eq_refl => id _ | |
end. | |
Definition compose_π1 {P} {A B C: Data.μ.t (Poly.data P)} (f: t B C) (g: t A B) | |
(x : Span.s (Poly.map (tag f ∘ tag g))): | |
t (Data.μ.field B (Span.π1 (Poly.map (tag f)) (projT1 (Poly.map_compose (tag f) (tag g))))) | |
(Data.μ.field C (Span.π2 (Poly.map (tag f ∘ tag g)) x)). | |
Proof. | |
rewrite (Poly.map_compose_π2 (tag f) (tag g) x). | |
exact (field f (projT1 (Poly.map_compose (tag f) (tag g)))). | |
Defined. | |
Definition compose_π2 {P} {A B C: Data.μ.t (Poly.data P)} (f: t B C) (g: t A B) | |
(x : Span.s (Poly.map (tag f ∘ tag g))): | |
t (Data.μ.field A (Span.π1 (Poly.map (tag f ∘ tag g)) x)) | |
(Data.μ.field B (Span.π2 (Poly.map (tag g)) (witness (projT2 (Poly.map_compose (tag f) (tag g)))))). | |
Proof. | |
rewrite (Poly.map_compose_π1 (tag f) (tag g) x). | |
exact (field g (witness (projT2 (Poly.map_compose (tag f) (tag g))))). | |
Defined. | |
Definition compose_π2' {P} {A B C: Data.μ.t (Poly.data P)} (f: t B C) (g: t A B) | |
(x : Span.s (Poly.map (tag f ∘ tag g))): | |
t (Data.μ.field A (Span.π1 (Poly.map (tag f ∘ tag g)) x)) | |
(Data.μ.field B (Span.π1 (Poly.map (tag f)) (projT1 (Poly.map_compose (tag f) (tag g))))). | |
Proof. | |
assert (g' := compose_π2 f g x). | |
cbn in *. | |
destruct (Poly.map_compose (tag f) (tag g)). | |
cbn in *. | |
destruct f0. | |
exact g'. | |
Defined. | |
Fixpoint compose {P} {A B C: Data.μ.t (Poly.data P)} (f: t B C) (g: t A B) {struct B}: t A C := | |
tag f ∘ tag g ▹ x, | |
compose (compose_π1 f g x) (compose_π2' f g x). | |
Fixpoint compose_id_l {P A B} {f: @μ.t P A B} {struct B}: μ.compose (μ.id _) f = f. | |
Proof. | |
destruct B, f. | |
cbn in *. | |
Admitted. | |
Lemma compose_id_r {P A B} {f: @μ.t P A B}: μ.compose f (μ.id _) = f. | |
Admitted. | |
Lemma compose_assoc {P A B C D} {f: @μ.t P C D} (g: @μ.t P B C) (h: @μ.t P A B): μ.compose f (μ.compose g h) = μ.compose (μ.compose f g) h. | |
Admitted. | |
End μ. | |
#[export] | |
Instance μ (P: Poly.t): Category.t (Data.μ.t (Poly.data P)) := { | |
Mor := @μ.t P ; | |
id := @μ.id P ; | |
compose := @μ.compose P ; | |
compose_assoc := @μ.compose_assoc P ; | |
compose_id_l := @μ.compose_id_l P ; | |
compose_id_r := @μ.compose_id_r P ; | |
}. | |
End Category. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment