Created
March 10, 2023 00:17
-
-
Save mstewartgallus/303aa1ecfe0eba7d3a655f99a77b6549 to your computer and use it in GitHub Desktop.
Really confused here. I thought induction was not derivable. Not sure how that applies to anafunctions?
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Require Import Coq.Unicode.Utf8. | |
(* ana is short for anafunction, not really a better name *) | |
Definition ana A := { P: A → Prop | exists! a: A, P a }. | |
Definition map {A B} (f: A → B) (x: ana A): ana B. | |
Proof. | |
exists (λ b, ∃ a, proj1_sig x a ∧ f a = b). | |
destruct x as [? [a p]]. | |
exists (f a). | |
cbn. | |
split. | |
- exists a. | |
split. | |
2: reflexivity. | |
destruct p. | |
auto. | |
- intro y. | |
intros [a' [? q]]. | |
replace a' with a in q. | |
1: auto. | |
eapply p. | |
auto. | |
Defined. | |
Definition pure {A} (x: A): ana A. | |
Proof. | |
exists (eq x). | |
exists x. | |
split. | |
1: reflexivity. | |
auto. | |
Defined. | |
Definition bind {A B} (f: A → ana B) (x: ana A): ana B. | |
Proof. | |
exists (λ b, ∃ a, proj1_sig x a ∧ proj1_sig (f a) b). | |
destruct x as [? [a p]]. | |
destruct (proj2_sig (f a)) as [y q]. | |
exists y. | |
cbn. | |
split. | |
- exists a. | |
split. | |
+ destruct p. | |
auto. | |
+ destruct q. | |
auto. | |
- intro y'. | |
intros [a' [r s]]. | |
destruct q. | |
destruct p. | |
eapply H0. | |
replace a' with a in s. | |
1: auto. | |
apply H2. | |
eauto. | |
Defined. | |
Definition nat: Type := ∀ N, ana N → (N → ana N) → ana N. | |
Definition O: nat. | |
Proof. | |
intros N O S. | |
exact O. | |
Defined. | |
Definition S (n: nat): nat. | |
Proof. | |
intros N O S. | |
exact (bind S (n N O S)). | |
Defined. | |
(* Recursor + eta laws is equivalent in power to induction correct? *) | |
Definition fold N O' S' (n: nat) := n N O' S'. | |
Lemma fold_O N O' S': fold N O' S' O = O'. | |
Proof. | |
cbn in *. | |
reflexivity. | |
Qed. | |
Lemma fold_S N O' S' (n: nat): | |
∀ m, | |
proj1_sig (bind S' (fold N O' S' n)) m ↔ | |
proj1_sig (fold N O' S' (S n)) m. | |
Proof. | |
intro m. | |
cbn. | |
split. | |
- intro. | |
auto. | |
- intro. | |
auto. | |
Defined. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment