Created
April 29, 2019 12:50
-
-
Save mstfldmr/44dfce35f5330b22ee1e3b28ca91a3e7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense, Activation, Flatten, Input | |
from keras.layers import Conv2D, MaxPooling2D, UpSampling2D | |
import matplotlib.pyplot as plt | |
from keras import backend as K | |
import numpy as np | |
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img | |
# Define the model | |
model = Sequential() | |
#1st convolution layer | |
model.add(Conv2D(16, (3, 3), padding='same', input_shape=(224,224,3))) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2,2), padding='same')) | |
#2nd convolution layer | |
model.add(Conv2D(2,(3, 3), padding='same')) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2,2), padding='same')) | |
#------------------------- | |
#3rd convolution layer | |
model.add(Conv2D(2,(3, 3), padding='same')) | |
model.add(Activation('relu')) | |
model.add(UpSampling2D((2, 2))) | |
#4rd convolution layer | |
model.add(Conv2D(16,(3, 3), padding='same')) | |
model.add(Activation('relu')) | |
model.add(UpSampling2D((2, 2))) | |
#------------------------- | |
model.add(Conv2D(3,(3, 3), padding='same')) | |
model.add(Activation('sigmoid')) | |
model.summary() | |
# Compile the model | |
model.compile(optimizer='adadelta', loss='binary_crossentropy') | |
# Generate data from the images in a folder | |
batch_size = 8 | |
train_datagen = ImageDataGenerator(rescale=1./255, data_format='channels_last') | |
train_generator = train_datagen.flow_from_directory( | |
'cropped/', | |
target_size=(224, 224), | |
batch_size=batch_size, | |
class_mode='input' | |
) | |
test_datagen = ImageDataGenerator(rescale=1./255, data_format='channels_last') | |
validation_generator = test_datagen.flow_from_directory( | |
'cropped/', | |
target_size=(224, 224), | |
batch_size=batch_size, | |
class_mode='input' | |
) | |
# Train the model | |
model.fit_generator( | |
train_generator, | |
steps_per_epoch=1000 // batch_size, | |
epochs=20, | |
validation_data=validation_generator, | |
validation_steps=1000 // batch_size) | |
# Test the model | |
data_list = [] | |
batch_index = 0 | |
while batch_index <= train_generator.batch_index: | |
data = train_generator.next() | |
data_list.append(data[0]) | |
batch_index = batch_index + 1 | |
data_list[0].shape | |
predicted = model.predict(data_list[0]) | |
plt.imshow(data_list[0][0]) | |
plt.imshow(predicted[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
thank you, you're in my prayers now haha