Created
May 28, 2014 07:41
-
-
Save msund/84bc2cd7681ef8324687 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:0066d7751e4802e747a189c766f68718da3fe272e314ebd5e4c27d43535c1cf9" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"Dataverse example plots" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"These were drawn from two datasets.\"[Replication data for: Asset Prices, Consumption, and the Business Cycle](http://thedata.harvard.edu/dvn/faces/study/StudyPage.xhtml;jsessionid=d814bb72587b5ac4c99920b4332a?globalId=hdl:1902.1/KSCWRAGNIJ)\" and \"[Replication data for: Consumption-Based Asset Pricing](http://thedata.harvard.edu/dvn/faces/study/StudyPage.xhtml?globalId=hdl:1902.1/UQRPVVDBHI).\" I downloaded the data, and called it into a few quick graphs. It took about five minutes. You could dress them up a good deal more; I just thought I'd show how this looks for someone who just wanted a quick look at the data." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"local({r <- getOption(\"repos\")\n", | |
" r[\"CRAN\"] <- \"http://cran.r-project.org\" \n", | |
" options(repos=r)\n", | |
"})" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"if(!require(plotly)) {\n", | |
" install_github(\"plotly\", \"ropensci\", quiet = TRUE)\n", | |
" }" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"library(plotly)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"py <- plotly(\"ggplot2examples\", \"3gazttckd7\")#Initiate Plotly graph object " | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"library(IRdisplay)\n", | |
"plotly_iframe <- function(url) {\n", | |
" # set width and height from options or default square\n", | |
" w <- \"700\"\n", | |
" h <- \"600\"\n", | |
" html <- paste(\"<center><iframe height=\\\"\", h, \"\\\" id=\\\"igraph\\\" scrolling=\\\"no\\\" seamless=\\\"seamless\\\"\\n\\t\\t\\t\\tsrc=\\\"\", \n", | |
" url, \"\\\" width=\\\"\", w, \"\\\" frameBorder=\\\"0\\\"></iframe></center>\", sep=\"\")\n", | |
" return(html)\n", | |
"}" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"display_html(plotly_iframe(\"https://plot.ly/~MattSundquist/1472\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<center><iframe height=\"600\" id=\"igraph\" scrolling=\"no\" seamless=\"seamless\"\n", | |
"\t\t\t\tsrc=\"https://plot.ly/~MattSundquist/1472\" width=\"700\" frameBorder=\"0\"></iframe></center>" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 26 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"display_html(plotly_iframe(\"https://plot.ly/~MattSundquist/1475\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<center><iframe height=\"600\" id=\"igraph\" scrolling=\"no\" seamless=\"seamless\"\n", | |
"\t\t\t\tsrc=\"https://plot.ly/~MattSundquist/1475\" width=\"700\" frameBorder=\"0\"></iframe></center>" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 19 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"display_html(plotly_iframe(\"https://plot.ly/~MattSundquist/1479\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<center><iframe height=\"600\" id=\"igraph\" scrolling=\"no\" seamless=\"seamless\"\n", | |
"\t\t\t\tsrc=\"https://plot.ly/~MattSundquist/1479\" width=\"700\" frameBorder=\"0\"></iframe></center>" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 20 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"display_html(plotly_iframe(\"https://plot.ly/~MattSundquist/1481\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<center><iframe height=\"600\" id=\"igraph\" scrolling=\"no\" seamless=\"seamless\"\n", | |
"\t\t\t\tsrc=\"https://plot.ly/~MattSundquist/1481\" width=\"700\" frameBorder=\"0\"></iframe></center>" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 21 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"display_html(plotly_iframe(\"https://plot.ly/~MattSundquist/1482\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<center><iframe height=\"600\" id=\"igraph\" scrolling=\"no\" seamless=\"seamless\"\n", | |
"\t\t\t\tsrc=\"https://plot.ly/~MattSundquist/1482\" width=\"700\" frameBorder=\"0\"></iframe></center>" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 23 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"display_html(plotly_iframe(\"https://plot.ly/~MattSundquist/1470\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<center><iframe height=\"600\" id=\"igraph\" scrolling=\"no\" seamless=\"seamless\"\n", | |
"\t\t\t\tsrc=\"https://plot.ly/~MattSundquist/1470\" width=\"700\" frameBorder=\"0\"></iframe></center>" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 27 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"display_html(plotly_iframe(\"https://plot.ly/~MattSundquist/1483\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<center><iframe height=\"600\" id=\"igraph\" scrolling=\"no\" seamless=\"seamless\"\n", | |
"\t\t\t\tsrc=\"https://plot.ly/~MattSundquist/1483\" width=\"700\" frameBorder=\"0\"></iframe></center>" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 25 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# CSS styling within IPython notebook\n", | |
"display_html(getURL(\"https://raw.githubusercontent.com/plotly/python-user-guide/master/custom.css\"))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<style>\n", | |
" /*body {\n", | |
" background-color: #F5F5F5;\n", | |
" }*/\n", | |
" div.cell{\n", | |
" width: 850px;\n", | |
" margin-left: 10% !important;\n", | |
" margin-right: auto;\n", | |
" }\n", | |
" h1 {\n", | |
" font-family: \"Open sans\",verdana,arial,sans-serif;\n", | |
" }\n", | |
" .text_cell_render h1 {\n", | |
" font-weight: 200;\n", | |
" font-size: 40pt;\n", | |
" line-height: 100%;\n", | |
" color:#447adb;\n", | |
" margin-bottom: 0em;\n", | |
" margin-top: 0em;\n", | |
" display: block;\n", | |
" white-space: nowrap;\n", | |
" } \n", | |
" h2 {\n", | |
" font-family: \"Open sans\",verdana,arial,sans-serif;\n", | |
" text-indent:1em;\n", | |
" }\n", | |
" .text_cell_render h2 {\n", | |
" font-weight: 200;\n", | |
" font-size: 20pt;\n", | |
" font-style: italic;\n", | |
" line-height: 100%;\n", | |
" color:#447adb;\n", | |
" margin-bottom: 1.5em;\n", | |
" margin-top: 0.5em;\n", | |
" display: block;\n", | |
" white-space: nowrap;\n", | |
" } \n", | |
" h3 {\n", | |
" font-family: \"Open sans\",verdana,arial,sans-serif;\n", | |
" }\n", | |
" .text_cell_render h3 {\n", | |
" font-weight: 300;\n", | |
" font-size: 18pt;\n", | |
" line-height: 100%;\n", | |
" color:#447adb;\n", | |
" margin-bottom: 0.5em;\n", | |
" margin-top: 2em;\n", | |
" display: block;\n", | |
" white-space: nowrap;\n", | |
" }\n", | |
" h4 {\n", | |
" font-family: \"Open sans\",verdana,arial,sans-serif;\n", | |
" }\n", | |
" .text_cell_render h4 {\n", | |
" font-weight: 300;\n", | |
" font-size: 16pt;\n", | |
" color:#447adb;\n", | |
" margin-bottom: 0.5em;\n", | |
" margin-top: 0.5em;\n", | |
" display: block;\n", | |
" white-space: nowrap;\n", | |
" }\n", | |
" h5 {\n", | |
" font-family: \"Open sans\",verdana,arial,sans-serif;\n", | |
" }\n", | |
" .text_cell_render h5 {\n", | |
" font-weight: 300;\n", | |
" font-style: normal;\n", | |
" color: #1d3b84;\n", | |
" font-size: 16pt;\n", | |
" margin-bottom: 0em;\n", | |
" margin-top: 1.5em;\n", | |
" display: block;\n", | |
" white-space: nowrap;\n", | |
" }\n", | |
" div.text_cell_render{\n", | |
" font-family: \"Open sans\",verdana,arial,sans-serif;\n", | |
" line-height: 135%;\n", | |
" font-size: 125%;\n", | |
" width:750px;\n", | |
" margin-left:auto;\n", | |
" margin-right:auto;\n", | |
" text-align:justify;\n", | |
" text-justify:inter-word;\n", | |
" }\n", | |
" div.output_subarea.output_text.output_pyout {\n", | |
" overflow-x: auto;\n", | |
" overflow-y: scroll;\n", | |
" max-height: 300px;\n", | |
" }\n", | |
" div.output_subarea.output_stream.output_stdout.output_text {\n", | |
" overflow-x: auto;\n", | |
" overflow-y: scroll;\n", | |
" max-height: 300px;\n", | |
" }\n", | |
" code{\n", | |
" font-size: 78%;\n", | |
" }\n", | |
" .rendered_html code{\n", | |
" background-color: transparent;\n", | |
" }\n", | |
" ul{\n", | |
" /* color:#447adb; */ // colors text too\n", | |
" margin: 2em;\n", | |
" }\n", | |
" ul li{\n", | |
" padding-left: 0.5em; \n", | |
" margin-bottom: 0.5em; \n", | |
" margin-top: 0.5em; \n", | |
" }\n", | |
" ul li li{\n", | |
" padding-left: 0.2em; \n", | |
" margin-bottom: 0.2em; \n", | |
" margin-top: 0.2em; \n", | |
" }\n", | |
" ol{\n", | |
" /* color:#447adb; */ // colors text too\n", | |
" margin: 2em;\n", | |
" }\n", | |
" ol li{\n", | |
" padding-left: 0.5em; \n", | |
" margin-bottom: 0.5em; \n", | |
" margin-top: 0.5em; \n", | |
" }\n", | |
" /*.prompt{\n", | |
" display: None;\n", | |
" } */\n", | |
" ul li{\n", | |
" padding-left: 0.5em; \n", | |
" margin-bottom: 0.5em; \n", | |
" margin-top: 0.2em; \n", | |
" }\n", | |
" a:link{\n", | |
" font-weight: bold;\n", | |
" color:#447adb;\n", | |
" }\n", | |
" a:visited{\n", | |
" font-weight: bold;\n", | |
" color: #1d3b84;\n", | |
" }\n", | |
" a:hover{\n", | |
" font-weight: bold;\n", | |
" color: #1d3b84;\n", | |
" }\n", | |
" a:focus{\n", | |
" font-weight: bold;\n", | |
" color:#447adb;\n", | |
" }\n", | |
" a:active{\n", | |
" font-weight: bold;\n", | |
" color:#447adb;\n", | |
" }\n", | |
" .rendered_html :link {\n", | |
" text-decoration: none; \n", | |
" }\n", | |
" .rendered_html :hover {\n", | |
" text-decoration: none; \n", | |
" }\n", | |
" .rendered_html :visited {\n", | |
" text-decoration: none;\n", | |
" }\n", | |
" .rendered_html :focus {\n", | |
" text-decoration: none;\n", | |
" }\n", | |
" .rendered_html :active {\n", | |
" text-decoration: none;\n", | |
" }\n", | |
" .warning{\n", | |
" color: rgb( 240, 20, 20 )\n", | |
" } \n", | |
" hr {\n", | |
" color: #f3f3f3;\n", | |
" background-color: #f3f3f3;\n", | |
" height: 1px;\n", | |
" }\n", | |
" blockquote{\n", | |
" display:block;\n", | |
" background: #f3f3f3;\n", | |
" font-family: \"Open sans\",verdana,arial,sans-serif;\n", | |
" width:610px;\n", | |
" padding: 15px 15px 15px 15px;\n", | |
" text-align:justify;\n", | |
" text-justify:inter-word;\n", | |
" }\n", | |
" blockquote p {\n", | |
" margin-bottom: 0;\n", | |
" line-height: 125%;\n", | |
" font-size: 100%;\n", | |
" }\n", | |
" /* element.style {\n", | |
" } */ \n", | |
"</style>\n", | |
"<script>\n", | |
" MathJax.Hub.Config({\n", | |
" TeX: {\n", | |
" extensions: [\"AMSmath.js\"]\n", | |
" },\n", | |
" tex2jax: {\n", | |
" inlineMath: [ [\"$\",\"$\"], [\"\\\\(\",\"\\\\)\"] ],\n", | |
" displayMath: [ [\"$$\",\"$$\"], [\"\\\\[\",\"\\\\]\"] ]\n", | |
" },\n", | |
" displayAlign: \"center\", // Change this to \"center\" to center equations.\n", | |
" \"HTML-CSS\": {\n", | |
" styles: {\".MathJax_Display\": {\"margin\": 4}}\n", | |
" }\n", | |
" });\n", | |
"</script>\n" | |
], | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"prompt_number": 28 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment