Last active
August 29, 2015 14:03
-
-
Save msund/a10c79fe88bb9ab89541 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
install.packages("devtools") # windows users install Rtools. Also: for mac and linux. | |
library("devtools") | |
install_github("ropensci/plotly") # Plotly is part of the super cool rOpenSci. | |
library(plotly) # install libraries we’ll be using | |
library(ggplot2) | |
library(reshape) | |
py <- plotly("ggplot2examples", "3gazttckd7") # sign up (https://plot.ly/ssi/) and get a key or use our public key to initiate a graph object | |
library(WDI) # now we’ll make the plot from the blog post | |
library(ggplot2) | |
dat = WDI(indicator='NY.GNP.PCAP.CD', country=c('CL','HU','UY'), start=1960, end=2012) # Grab GNI per capita data for Chile, Hungary and Uruguay | |
wb <- ggplot(dat, aes(year, NY.GNP.PCAP.CD, color=country)) + geom_line() | |
+ xlab('Year') + ylab('GDI per capita (Atlas Method USD)') | |
+ labs(title <- "GNI Per Capita ($USD Atlas Method)") | |
py$ggplotly(wb) # call Plotly |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment