-
-
Save msuryaprakash/4b557a01fa4eefd7ba9e1d662fbcca64 to your computer and use it in GitHub Desktop.
NER Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://nlpforhackers.io/named-entity-extraction/ | |
import os | |
import string | |
import collections | |
import pickle | |
from collections import Iterable | |
from nltk.tag import ClassifierBasedTagger | |
from nltk.chunk import ChunkParserI, conlltags2tree, tree2conlltags | |
from nltk import pos_tag, word_tokenize | |
from nltk.stem import SnowballStemmer | |
ner_tags = collections.Counter() | |
corpus_root = "gmb-2.2.0" # Make sure you set the proper path to the unzipped corpus | |
def to_conll_iob(annotated_sentence): | |
""" | |
`annotated_sentence` = list of triplets [(w1, t1, iob1), ...] | |
Transform a pseudo-IOB notation: O, PERSON, PERSON, O, O, LOCATION, O | |
to proper IOB notation: O, B-PERSON, I-PERSON, O, O, B-LOCATION, O | |
""" | |
proper_iob_tokens = [] | |
for idx, annotated_token in enumerate(annotated_sentence): | |
tag, word, ner = annotated_token | |
if ner != 'O': | |
if idx == 0: | |
ner = "B-" + ner | |
elif annotated_sentence[idx - 1][2] == ner: | |
ner = "I-" + ner | |
else: | |
ner = "B-" + ner | |
proper_iob_tokens.append((tag, word, ner)) | |
return proper_iob_tokens | |
def features(tokens, index, history): | |
""" | |
`tokens` = a POS-tagged sentence [(w1, t1), ...] | |
`index` = the index of the token we want to extract features for | |
`history` = the previous predicted IOB tags | |
""" | |
# init the stemmer | |
stemmer = SnowballStemmer('english') | |
# Pad the sequence with placeholders | |
tokens = [('[START2]', '[START2]'), ('[START1]', '[START1]')] + list(tokens) + [('[END1]', '[END1]'), ('[END2]', '[END2]')] | |
history = ['[START2]', '[START1]'] + list(history) | |
# shift the index with 2, to accommodate the padding | |
index += 2 | |
word, pos = tokens[index] | |
prevword, prevpos = tokens[index - 1] | |
prevprevword, prevprevpos = tokens[index - 2] | |
nextword, nextpos = tokens[index + 1] | |
nextnextword, nextnextpos = tokens[index + 2] | |
previob = history[index - 1] | |
contains_dash = '-' in word | |
contains_dot = '.' in word | |
allascii = all([True for c in word if c in string.ascii_lowercase]) | |
allcaps = word == word.capitalize() | |
capitalized = word[0] in string.ascii_uppercase | |
prevallcaps = prevword == prevword.capitalize() | |
prevcapitalized = prevword[0] in string.ascii_uppercase | |
nextallcaps = prevword == prevword.capitalize() | |
nextcapitalized = prevword[0] in string.ascii_uppercase | |
return { | |
'word': word, | |
'lemma': stemmer.stem(word), | |
'pos': pos, | |
'all-ascii': allascii, | |
'next-word': nextword, | |
'next-lemma': stemmer.stem(nextword), | |
'next-pos': nextpos, | |
'next-next-word': nextnextword, | |
'nextnextpos': nextnextpos, | |
'prev-word': prevword, | |
'prev-lemma': stemmer.stem(prevword), | |
'prev-pos': prevpos, | |
'prev-prev-word': prevprevword, | |
'prev-prev-pos': prevprevpos, | |
'prev-iob': previob, | |
'contains-dash': contains_dash, | |
'contains-dot': contains_dot, | |
'all-caps': allcaps, | |
'capitalized': capitalized, | |
'prev-all-caps': prevallcaps, | |
'prev-capitalized': prevcapitalized, | |
'next-all-caps': nextallcaps, | |
'next-capitalized': nextcapitalized, | |
} | |
def read_gmb(corpus_root): | |
for root, dirs, files in os.walk(corpus_root): | |
for filename in files: | |
if filename.endswith(".tags"): | |
with open(os.path.join(root, filename), 'rb') as file_handle: | |
file_content = file_handle.read().decode('utf-8').strip() | |
annotated_sentences = file_content.split('\n\n') | |
for annotated_sentence in annotated_sentences: | |
annotated_tokens = [seq for seq in annotated_sentence.split('\n') if seq] | |
standard_form_tokens = [] | |
for idx, annotated_token in enumerate(annotated_tokens): | |
annotations = annotated_token.split('\t') | |
word, tag, ner = annotations[0], annotations[1], annotations[3] | |
if ner != 'O': | |
ner = ner.split('-')[0] | |
if tag in ('LQU', 'RQU'): # Make it NLTK compatible | |
tag = "``" | |
standard_form_tokens.append((word, tag, ner)) | |
conll_tokens = to_conll_iob(standard_form_tokens) | |
# Make it NLTK Classifier compatible - [(w1, t1, iob1), ...] to [((w1, t1), iob1), ...] | |
# Because the classfier expects a tuple as input, first item input, second the class | |
yield [((w, t), iob) for w, t, iob in conll_tokens] | |
class NamedEntityChunker(ChunkParserI): | |
def __init__(self, train_sents, **kwargs): | |
assert isinstance(train_sents, Iterable) | |
self.feature_detector = features | |
self.tagger = ClassifierBasedTagger( | |
train=train_sents, | |
feature_detector=features, | |
**kwargs) | |
def parse(self, tagged_sent): | |
chunks = self.tagger.tag(tagged_sent) | |
# Transform the result from [((w1, t1), iob1), ...] | |
# to the preferred list of triplets format [(w1, t1, iob1), ...] | |
iob_triplets = [(w, t, c) for ((w, t), c) in chunks] | |
# Transform the list of triplets to nltk.Tree format | |
return conlltags2tree(iob_triplets) | |
reader = read_gmb(corpus_root) | |
data = list(reader) | |
training_samples = data[:int(len(data) * 0.9)] | |
test_samples = data[int(len(data) * 0.9):] | |
chunker = NamedEntityChunker(training_samples[:2000]) | |
print(chunker.parse(pos_tag(word_tokenize("I'm going to Germany this Monday.")))) | |
print("#training samples = %s" % len(training_samples)) # training samples = 55809 | |
print("#test samples = %s" % len(test_samples)) # test samples = 6201 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment