Last active
December 4, 2017 11:51
-
-
Save mtmorgan/eaf456ad5b45c431c494 to your computer and use it in GitHub Desktop.
read kallisto RNA-seq quantification into R / Bioconductor data structures
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
.require <- | |
function(pkg) | |
{ | |
withCallingHandlers({ | |
suppressPackageStartupMessages({ | |
require(pkg, character.only=TRUE, quietly=TRUE) | |
}) | |
}, warning=function(w) { | |
invokeRestart("muffleWarning") | |
}) || { | |
msg <- sprintf('install %s with | |
source("http://bioconductor.org/biocLite.R"); biocLite("%s")', | |
pkg, pkg) | |
stop(paste(strwrap(msg, exdent=2), collapse="\n")) | |
} | |
} | |
.open <- function(files, h5) { | |
lapply(files, function(file) { | |
if (h5 && H5Fis_hdf5(file)) | |
H5Fopen(file) | |
else file(file, open="rt") | |
}) | |
} | |
.close <- function(cons) | |
UseMethod(".close") | |
.close.list <- function(cons) | |
for (con in cons) | |
.close(con) | |
.close.connection <- function(cons) | |
close(cons) | |
.close.H5IdComponent <- function(cons) | |
H5Fclose(cons) | |
.colData <- function(jsonfile) { | |
json <- fromJSON(jsonfile) | |
do.call("data.frame", c(json, stringsAsFactors=FALSE)) | |
} | |
.KALLISTO_COLCLASSES <- | |
c("character", "integer" , "numeric", "numeric", "numeric") | |
.KALLISTO_ROWDATA <- "length" | |
KALLISTO_ASSAYS <- c("est_counts", "tpm", "eff_length") | |
.read <- function(con) | |
UseMethod(".read") | |
.read.connection <- function(con) | |
read.delim(con, header=TRUE, colClasses=.KALLISTO_COLCLASSES, row.names=1) | |
.read.H5IdComponent <- function(con) { | |
eff_length <- h5read(con, "/aux/eff_lengths") | |
est_counts <- h5read(con, "/est_counts") | |
tpm0 <- est_counts / eff_length | |
data.frame(row.names=h5read(con, "/aux/ids"), | |
length=h5read(con, "/aux/lengths"), | |
eff_length=eff_length, | |
est_counts=est_counts, | |
tpm=tpm0 / (sum(tpm0) / 1e6)) | |
} | |
readKallisto <- | |
function(files, | |
json=file.path(dirname(files), "run_info.json"), | |
h5=any(grepl("\\.h5$", files)), | |
what=KALLISTO_ASSAYS, | |
as=c("matrix", "list", "SummarizedExperiment")) | |
{ | |
as <- match.arg(as) | |
if (missing(what)) | |
what <- what[1] | |
else { | |
whats <- eval(formals()[["what"]]) | |
if (!all(what %in% KALLISTO_ASSAYS)) | |
stop("'what' must be in ", | |
paste(sQuote(KALLISTO_ASSAYS), collapse=", "), | |
call.=FALSE) | |
} | |
stopifnot(is.character(files)) | |
test <- file.exists(files) | |
if (!all(test)) | |
stop("file(s) do not exist:\n ", | |
paste(files[!test], collapse="\n ")) | |
if (is.null(names(files))) | |
names(files) <- basename(dirname(files)) | |
if (as != "matrix") { | |
.require("jsonlite") | |
stopifnot(length(files) == length(json)) | |
if (!is.null(names(json))) | |
stopifnot(identical(names(json), names(files))) | |
else | |
names(json) <- names(files) | |
test <- file.exists(json) | |
if (!all(test)) | |
stop("json file(s) do not exist:\n ", | |
paste(json[!test], collapse="\n ")) | |
} | |
if (h5) | |
.require("rhdf5") | |
if (as == "SummarizedExperiment") { | |
if (BiocInstaller::biocVersion() >= '3.2') | |
.require("SummarizedExperiment") | |
else .require("GenomicRanges") | |
} | |
cons <- .open(files, h5) | |
value <- .read(cons[[1]]) | |
rowData <- value[, .KALLISTO_ROWDATA, drop=FALSE] | |
assay <- matrix(0, nrow(rowData), length(cons), | |
dimnames=list(rownames(rowData), names(cons))) | |
assays <- setNames(replicate(length(what), assay, FALSE), what) | |
for (w in what) | |
assays[[w]][,1] <- value[[w]] | |
for (i in seq_along(cons)[-1]) { | |
value <- .read(cons[[i]]) | |
if (!identical(rowData, value[, .KALLISTO_ROWDATA, drop=FALSE])) | |
stop("rowData differs between files:\n ", | |
paste(files[c(1, i)], collapse="\n ")) | |
for (w in what) | |
assays[[w]][,i] <- value[[w]] | |
} | |
.close(cons) | |
if (as != "matrix") | |
colData <- do.call("rbind", lapply(json, .colData)) | |
switch(as, matrix={ | |
if (length(assays) == 1L) | |
assays[[1]] | |
else assays | |
}, list={ | |
c(setNames(list(colData, rowData), c("colData", "rowData")), assays) | |
}, SummarizedExperiment={ | |
partition <- | |
PartitioningByEnd(integer(nrow(rowData)), names=rownames(rowData)) | |
rowRanges <- relist(GRanges(), partition) | |
mcols(rowRanges) <- as(rowData, "DataFrame") | |
SummarizedExperiment(assays=assays, rowRanges=rowRanges, | |
colData=as(colData, "DataFrame")) | |
}) | |
} | |
.readIds <- function(con, i) { | |
if (!missing(i)) | |
h5read(con, "/aux/ids", list(i)) | |
else h5read(con, "/aux/ids") | |
} | |
readBootstrap <- | |
function(file, i, j) | |
{ | |
.require("rhdf5") | |
stopifnot(length(file) == 1L, is.character(file)) | |
stopifnot(file.exists(file)) | |
stopifnot(H5Fis_hdf5(file)) | |
con <- H5Fopen(file) | |
on.exit(H5Fclose(con)) | |
nboot <- as.integer(h5read(con, "/aux/num_bootstrap")) | |
if (nboot == 0L) | |
stop("file contains no bootstraps:\n ", file) | |
if (!missing(i) && is.character(i)) { | |
idx <- match(i, .readIds(con)) | |
if (anyNA(i)) | |
stop("unknown target id(s)", i[is.na(idx)]) | |
i <- idx | |
} | |
if (!missing(j) && is.numeric(j)) { | |
if (any((j < 1L) || any(j > nboot))) | |
stop("'j' must be >0 and <=", nboot) | |
j <- paste0("bs", as.integer(j) - 1L) | |
} | |
m <- if (missing(i) && missing(j)) { | |
simplify2array(h5read(con, "/bootstrap")) | |
} else if (missing(i)) { | |
query <- setNames(sprintf("/bootstrap/%s", j), j) | |
simplify2array(lapply(query, h5read, file=con)) | |
} else if (missing(j)) { | |
group <- H5Gopen(con, "/bootstrap") | |
name <- h5ls(group)$name | |
H5Gclose(group) | |
query <- setNames(sprintf("/bootstrap/%s", name), name) | |
simplify2array(lapply(query, h5read, file=con, index=list(i))) | |
} else { | |
query <- setNames(sprintf("/bootstrap/%s", j), j) | |
simplify2array(lapply(query, h5read, file=con, index=list(i))) | |
} | |
rownames(m) <- .readIds(con, i) | |
if (missing(j)) { | |
o <- order(as.integer(sub("bs", "", colnames(m), fixed=TRUE))) | |
m[,o] | |
} else m | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
source("readKallisto.R") | |
files <- dir("~/a/kallisto/example", "abundance.tsv", full=TRUE, | |
recursive=TRUE) | |
stopifnot(all(file.exists(files))) | |
str(readKallisto(files, as="matrix")) | |
str(readKallisto(files, as="list")) | |
(se <- readKallisto(files, as="SummarizedExperiment")) | |
str(readKallisto(files, what="eff_length")) | |
readKallisto(files, what="eff_length", as="SummarizedExperiment") | |
files <- sub(".tsv", ".h5", files, fixed=TRUE) | |
str(readKallisto(files)) | |
str(readKallisto(files, what="tpm")) | |
readKallisto(files, what="tpm", as="SummarizedExperiment") | |
readKallisto(files, what=c("tpm", "eff_length"), as="SummarizedExperiment") | |
xx <- readBootstrap(files[1]) | |
ridx <- head(which(rowSums(xx) != 0), 3) | |
cidx <- c(1:5, 96:100) | |
readBootstrap(files[1])[ridx, cidx] | |
readBootstrap(files[1], i=c(ridx, rev(ridx)), j=cidx) |
Is there any inclination to package this code? I have obtained the fastq files underlying the RNAseqData.HNRNPC... experiment data package with the aim of comparing a count-based analysis to a Kallisto-based analysis. Would a workflow document that carefully manages the fastq plus sample-level data and takes the information downstream to a SummarizedExperiment be of interest? Or perhaps one already exists?
i see now that sleuth handles parsing -> shiny. there may not be much scope for packaging the parsing code ... but still, the role of bioc object discipline warrants exploration.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Just a note on installing into R--very easy....