Created
February 4, 2015 07:12
-
-
Save mtschirs/df8d8dc5ff56cc7187b1 to your computer and use it in GitHub Desktop.
Converting the new OpenCV haar cascades into the js-objectdetect format.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import xml.etree.ElementTree | |
''' | |
Classifier - array layout: | |
[width, height, threshold, num_simple_classifiers, tilted, num_features, f1, f2, f3, f4, f_weight, simple_threshold, left_val, right, val, ...] | |
''' | |
wrapper = "(function(module) {\n" + \ | |
" \"use strict\";\n" + \ | |
" \n" + \ | |
" var classifier = %classifier;\n" + \ | |
" module.classifier = new Float32Array(classifier);\n" + \ | |
" module.classifier.tilted = false;\n" + \ | |
"})(objectdetect);" | |
def convert(filename): | |
''' | |
Converts xml haar cascade to json. | |
cascade = {size:[20 20], complex_classifiers:[]} | |
complex_classifier = {simple_features:[], treshold} | |
simple_classifier = {features:[], threshold, left_val, right_val} | |
feature = [x, y, width, height, factor] | |
''' | |
pos = filename.rfind("."); | |
json_file = file((filename if pos == -1 else filename[0:pos]) + ".js", "w"); | |
tree = xml.etree.ElementTree.parse(filename) | |
json_file.write(parse_cascase(tree.getroot()[0])) | |
json_file.close(); | |
def parse_cascase(element, wrapper=wrapper): | |
complex_classifiers = [] | |
features = [] | |
for feature in element.find("features").findall("_"): | |
features.append(parse_feature(feature)) | |
for stage in element.find("stages").findall("_"): | |
complex_classifiers.append(parse_complex_classifier(stage, features)) | |
return wrapper.replace("%classifier", | |
"[" + element.find("width").text.strip() + "," + element.find("height").text.strip() + "," + \ | |
",".join(complex_classifiers) + "]") | |
def parse_complex_classifier(element, features): | |
simple_classifiers = [] | |
for weak_classifier in element.find("weakClassifiers").findall("_"): | |
simple_classifiers.append(parse_weak_classifier(weak_classifier, features)) | |
return element.find("stageThreshold").text + "," + \ | |
str(len(simple_classifiers)) + "," + \ | |
",".join(simple_classifiers) | |
def parse_weak_classifier(element, features): | |
internal_node = element.find("internalNodes").text.strip().split(" ") | |
leaf_values = element.find("leafValues").text.strip().split(" ") | |
feature = features[int(internal_node[2])] | |
return internal_node[0] + "," + \ | |
str(len(feature)) + "," + \ | |
",".join(feature) + "," + \ | |
internal_node[3] + "," + \ | |
leaf_values[0] + "," + \ | |
leaf_values[1] | |
def parse_feature(element): | |
feature = [] | |
for rect in element.find("rects").findall("_"): | |
feature.append(",".join(rect.text.strip().split(" "))) | |
return feature; | |
convert("../res/haarcascade_frontalface_default.xml"); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
For other people trying this, be aware that
file()
is no supported in python3. Useopen()
instead.