Created
September 11, 2024 17:22
-
-
Save muellerzr/f3f4536841df95ca9a89541c2b53096f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import deepspeed | |
from datasets import load_dataset | |
from torch.optim import AdamW | |
from torch.utils.data import DataLoader | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup | |
from accelerate import PartialState | |
MAX_GPU_BATCH_SIZE = 16 | |
EVAL_BATCH_SIZE = 32 | |
zero2_ds_config = { | |
"bf16": { | |
"enabled": True | |
}, | |
"zero_optimization": { | |
"stage": 2, | |
"offload_optimizer": { | |
"device": "cpu", | |
"pin_memory": True | |
}, | |
"allgather_partitions": True, | |
"allgather_bucket_size": 2e8, | |
"overlap_comm": True, | |
"reduce_scatter": True, | |
"reduce_bucket_size": "auto", | |
"contiguous_gradients": True | |
}, | |
"gradient_accumulation_steps": 1, | |
"gradient_clipping": "auto", | |
"steps_per_print": 2000, | |
"train_batch_size": 32, | |
"train_micro_batch_size_per_gpu": 16, | |
"wall_clock_breakdown": False | |
} | |
zero3_ds_config = { | |
"bf16": { | |
"enabled": True | |
}, | |
"zero_optimization": { | |
"stage": 3, | |
"offload_optimizer": { | |
"device": "cpu", | |
"pin_memory": True | |
}, | |
"offload_param": { | |
"device": "cpu", | |
"pin_memory": True | |
}, | |
"overlap_comm": True, | |
"contiguous_gradients": True, | |
"sub_group_size": 1e9, | |
"reduce_bucket_size": "auto", | |
"stage3_prefetch_bucket_size": "auto", | |
"stage3_param_persistence_threshold": "auto", | |
"stage3_max_live_parameters": 1e9, | |
"stage3_max_reuse_distance": 1e9, | |
"stage3_gather_16bit_weights_on_model_save": "auto", | |
"memory_efficient_linear": False | |
}, | |
"gradient_accumulation_steps": 1, | |
"gradient_clipping": "auto", | |
"steps_per_print": 2000, | |
"wall_clock_breakdown": False, | |
"train_batch_size": 32, | |
"train_micro_batch_size_per_gpu": 16 | |
} | |
def get_dataloaders(batch_size: int = 16, model_name: str = "bert-base-cased"): | |
""" | |
Creates a set of `DataLoader`s for the `glue` dataset. | |
Args: | |
accelerator (`Accelerator`): | |
An `Accelerator` object | |
batch_size (`int`, *optional*): | |
The batch size for the train and validation DataLoaders. | |
model_name (`str`, *optional*): | |
""" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
datasets = load_dataset("glue", "mrpc") | |
def tokenize_function(examples): | |
# max_length=None => use the model max length (it's actually the default) | |
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) | |
return outputs | |
# Apply the method we just defined to all the examples in all the splits of the dataset | |
tokenized_datasets = datasets.map( | |
tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False | |
) | |
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the | |
# transformers library | |
tokenized_datasets = tokenized_datasets.rename_column("label", "labels") | |
def collate_fn(examples): | |
return tokenizer.pad(examples, padding="longest", return_tensors="pt") | |
# Instantiate dataloaders. | |
train_dataloader = DataLoader( | |
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size | |
) | |
eval_dataloader = DataLoader( | |
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE | |
) | |
return train_dataloader, eval_dataloader | |
def multiple_model_training(model_name_or_path): | |
# This will essentially be like a k-fold model, but one model is Zero-2 and another model is Zero-3 | |
num_epochs = 2 | |
lr = 2e-5 | |
batch_size = 16 | |
zero2_model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path) | |
train_dataloader, _ = get_dataloaders(batch_size=batch_size, model_name=model_name_or_path) | |
max_training_steps = len(train_dataloader) * num_epochs | |
zero2_optimizer = AdamW(zero2_model.parameters(), lr=lr) | |
# Then convert to DS | |
from deepspeed.ops.adam import DeepSpeedCPUAdam | |
defaults = {k: v for k, v in zero2_optimizer.defaults.items() if k in ["lr", "weight_decay"]} | |
zero2_optimizer = DeepSpeedCPUAdam(zero2_model.parameters(), **defaults) | |
zero2_lr_scheduler = get_linear_schedule_with_warmup(zero2_optimizer, num_warmup_steps=0, num_training_steps=max_training_steps) | |
zero2_model, zero2_optimizer, _, zero2_lr_scheduler = deepspeed.initialize( | |
model=zero2_model, | |
model_parameters=zero2_model.parameters(), | |
config=zero2_ds_config, | |
optimizer=zero2_optimizer, | |
lr_scheduler=zero2_lr_scheduler, | |
) | |
# Now that we have DS, get the device | |
state = PartialState() | |
device = state.device | |
# Uncomment to use zero3 instead of zero2 | |
zero3_config = zero2_ds_config | |
# Manually enable zero3 in the env | |
# zero3_config = HfDeepSpeedConfig(zero3_ds_config) | |
# zero3_config.config["train_micro_batch_size_per_gpu"] = zero2_ds_config["train_micro_batch_size_per_gpu"] | |
zero3_model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path) | |
zero3_optimizer = AdamW(zero3_model.parameters(), lr=lr) | |
defaults = {k: v for k, v in zero3_optimizer.defaults.items() if k in ["lr", "weight_decay"]} | |
zero3_optimizer = DeepSpeedCPUAdam(zero3_model.parameters(), **defaults) | |
zero3_lr_scheduler = get_linear_schedule_with_warmup(zero3_optimizer, num_warmup_steps=0, num_training_steps=max_training_steps) | |
zero3_model, zero3_optimizer, _, zero3_lr_scheduler = deepspeed.initialize( | |
model=zero3_model, | |
model_parameters=zero3_model.parameters(), | |
config=zero3_config, | |
optimizer=zero3_optimizer, | |
lr_scheduler=zero3_lr_scheduler, | |
) | |
for epoch in range(num_epochs): | |
zero2_model.train() | |
zero3_model.train() | |
for step, batch in enumerate(train_dataloader): | |
batch = batch.to(device) | |
outputs_1 = zero2_model(**batch) | |
outputs_2 = zero3_model(**batch) | |
loss = outputs_1.loss + outputs_2.loss / 2 | |
zero2_model.backward(loss, retain_graph=True) | |
zero3_model.backward(loss) | |
zero2_model.step() | |
zero3_model.step() | |
def main(): | |
parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") | |
parser.add_argument( | |
"--model_name_or_path", | |
type=str, | |
default="bert-base-cased", | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
required=False, | |
) | |
args = parser.parse_args() | |
multiple_model_training(args.model_name_or_path) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment