Last active
September 24, 2025 09:52
-
-
Save mukeshtiwari/84ade0619b498ee8cc6dd4aa7f4209ac to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| From Stdlib Require Import | |
| Vector Fin Bool Utf8 | |
| Psatz BinIntDef. | |
| Import VectorNotations EqNotations. | |
| Notation "'existsT' x .. y , p" := | |
| (sigT (fun x => .. (sigT (fun y => p)) ..)) | |
| (at level 200, x binder, right associativity, | |
| format "'[' 'existsT' '/ ' x .. y , '/ ' p ']'") : type_scope. | |
| Section Ins. | |
| Context {R : Type}. | |
| Lemma vector_inv_S : | |
| forall {n : nat} (v : Vector.t R (S n)), {h & {t & v = h :: t}}. | |
| Proof. | |
| intros n v. | |
| refine | |
| (match v as v' in Vector.t _ n' return | |
| (match n' return Vector.t R n' -> Type | |
| with | |
| | 0 => fun _ => IDProp | |
| | S n'' => fun (ea : Vector.t R (S n'')) => | |
| {h : R & {t : Vector.t R n'' & ea = h :: t}} | |
| end v') | |
| with | |
| | cons _ h _ t => existT _ h (existT _ t eq_refl) | |
| end). | |
| Defined. | |
| Lemma fin_inv_S (n : nat) (i : Fin.t (S n)) : | |
| (i = Fin.F1) + {i' | i = Fin.FS i'}. | |
| Proof. | |
| refine (match i with | |
| | Fin.F1 => _ | |
| | Fin.FS _ => _ | |
| end); eauto. | |
| Defined. | |
| Definition take : forall (n : nat) {m : nat}, | |
| Vector.t R (n + m) -> Vector.t R n. | |
| Proof. | |
| refine( | |
| fix Fn n {struct n} := | |
| match n with | |
| | 0 => fun _ _ => [] | |
| | S n' => fun _ v => _ | |
| end). | |
| cbn in v. | |
| destruct (vector_inv_S v) as (vh & vtl & _). | |
| exact (vh :: Fn _ _ vtl). | |
| Defined. | |
| Definition drop : forall (n : nat) {m : nat}, | |
| Vector.t R (n + m) -> Vector.t R m. | |
| Proof. | |
| refine( | |
| fix Fn n {struct n} := | |
| match n with | |
| | 0 => fun _ v => v | |
| | S n' => fun _ v => _ | |
| end). | |
| cbn in v. | |
| destruct (vector_inv_S v) as (_ & vtl & _). | |
| exact (Fn _ _ vtl). | |
| Defined. | |
| Theorem take_drop_inv : ∀ (n m : nat) (v : Vector.t R (n + m)), | |
| v = take n v ++ drop n v. | |
| Proof. | |
| induction n as [|n ihn]. | |
| + | |
| cbn; intros *. | |
| reflexivity. | |
| + | |
| cbn; intros *. | |
| destruct (vector_inv_S v) as (vh & vt & ha). | |
| cbn. rewrite ha. f_equal. | |
| erewrite <-ihn. | |
| reflexivity. | |
| Qed. | |
| Theorem rew_eq_refl : ∀ (n m : nat) (v₁ : Vector.t R n) | |
| (v₂ : Vector.t R m) (vh : R) (pf : n = m), | |
| v₁ = rew <-pf in v₂ -> | |
| vh :: v₁ = rew <- [Vector.t R] f_equal S pf in (vh :: v₂). | |
| Proof. | |
| intros * ha. | |
| subst; cbn; reflexivity. | |
| Qed. | |
| Theorem vector_fin_app : ∀ (n : nat) (f : Fin.t n) (v : Vector.t R n), | |
| existsT (m₁ m₂ : nat) (v₁ : Vector.t R m₁) (vm : R) | |
| (v₂ : Vector.t R m₂) | |
| (pf : n = m₁ + (1 + m₂)), | |
| v = rew <- [Vector.t R] pf in (v₁ ++ [vm] ++ v₂) ∧ | |
| vm = Vector.nth v f ∧ | |
| m₁ = proj1_sig (Fin.to_nat f). | |
| Proof. | |
| induction n as [|n ihn]. | |
| + | |
| intros *. | |
| refine match f with end. | |
| + | |
| intros *. | |
| destruct (fin_inv_S _ f) as [f' | (f' & ha)]. | |
| ++ | |
| subst; cbn. | |
| destruct (vector_inv_S v) as (vh & vt & hb). | |
| exists 0, n, [], vh, vt, eq_refl. | |
| subst; cbn. | |
| repeat split; reflexivity. | |
| ++ | |
| (* inductive case *) | |
| destruct (vector_inv_S v) as (vh & vt & hb). | |
| subst; cbn. | |
| destruct (ihn f' vt) as (m₁ & m₂ & v₁ & vm & v₂ & pf & ha & hb & hc). | |
| exists (S m₁), m₂, (vh :: v₁), vm, v₂, (f_equal S pf). | |
| cbn; split. | |
| eapply rew_eq_refl; exact ha. | |
| split. | |
| exact hb. | |
| destruct (to_nat f') as (u & hu). | |
| cbn in hc |- *. | |
| subst. reflexivity. | |
| Defined. | |
| Theorem vector_fin_app_pred : ∀ (n : nat) (f : Fin.t (1 + n)) | |
| (va : Vector.t R (1 + n)) (vb : Vector.t R n), | |
| existsT (m₁ m₂ : nat) (v₁ v₃ : Vector.t R m₁) (vm : R) | |
| (v₂ v₄ : Vector.t R m₂) | |
| (pfa : (1 + n = (m₁ + (1 + m₂)))) (pfb : (n = m₁ + m₂)), | |
| (va = rew <- [Vector.t R] (pfa) in ((v₁ ++ [vm] ++ v₂)) ∧ | |
| vm = Vector.nth va f ∧ | |
| vb = rew <- [Vector.t R] (pfb) in ((v₃ ++ v₄)) ∧ | |
| m₁ = proj1_sig (Fin.to_nat f)). | |
| Proof. | |
| intros *. | |
| destruct (vector_fin_app _ f va) as | |
| (m₁ & m₂ & v₁ & vm & v₂ & pf & ha & hb). | |
| assert (hc : n = m₁ + m₂) by nia. subst. | |
| exists m₁, m₂, v₁, (take m₁ vb), | |
| vm, v₂, (drop m₁ vb), pf, eq_refl. | |
| subst; cbn in * |- *. | |
| split. reflexivity. | |
| destruct hb as (hb & hc). | |
| split. exact hb. | |
| split. | |
| eapply take_drop_inv. | |
| destruct (to_nat f) as (u & hu). | |
| cbn in hc |- *. | |
| subst. reflexivity. | |
| Defined. | |
| Record Box (P : Prop) : Type := { p : P }. | |
| Arguments p {_} _. | |
| Theorem vector_fin_app_pred_box : ∀ (n : nat) (f : Fin.t (1 + n)) | |
| (va : Vector.t R (1 + n)) (vb : Vector.t R n), | |
| existsT (m₁ m₂ : nat) (v₁ v₃ : Vector.t R m₁) (vm : R) | |
| (v₂ v₄ : Vector.t R m₂) | |
| (pfa : Box (1 + n = (m₁ + (1 + m₂)))) (pfb : Box (n = m₁ + m₂)), | |
| Box (va = rew <- [Vector.t R] (p pfa) in ((v₁ ++ [vm] ++ v₂)) ∧ | |
| vm = Vector.nth va f ∧ | |
| vb = rew <- [Vector.t R] (p pfb) in ((v₃ ++ v₄)) ∧ | |
| m₁ = proj1_sig (Fin.to_nat f)). | |
| Proof. | |
| intros *. | |
| destruct (vector_fin_app _ f va) as | |
| (m₁ & m₂ & v₁ & vm & v₂ & pf & ha & hb). | |
| assert (hc : n = m₁ + m₂) by nia. subst. | |
| exists m₁, m₂, v₁, (take m₁ vb), | |
| vm, v₂, (drop m₁ vb), (Build_Box _ pf), (Build_Box _ eq_refl). | |
| subst; cbn in * |- *. | |
| split. split. reflexivity. | |
| destruct hb as (hb & hc). | |
| split. exact hb. | |
| split. | |
| eapply take_drop_inv. | |
| destruct (to_nat f) as (u & hu). | |
| cbn in hc |- *. | |
| subst. reflexivity. | |
| Defined. | |
| End Ins. | |
| From Stdlib Require Import Extraction. | |
| Extraction Language Haskell. | |
| Recursive Extraction vector_fin_app_pred_box. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment