Created
August 23, 2016 08:09
-
-
Save mukeshtiwari/980108d54f1bfffb38b55b1424887c07 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Theorem iter_aux_new {A: Type} (O: (A -> bool) -> (A -> bool)) (l: list A): | |
mon O -> | |
(forall a: A, In a l) -> | |
forall (n : nat), (forall a:A, iter O n nil_pred a = true <-> iter O (n+1) nil_pred a = true) \/ | |
card l (iter O n nil_pred) >= n. | |
Proof. | |
intros Hmon Hfin n. specialize (iter_aux O l Hmon Hfin n); intros. | |
destruct H as [H | H]. left. assumption. | |
right. unfold mon in Hmon. unfold card in H; unfold card. | |
generalize dependent n. | |
and goal is | |
A : Type | |
O : (A -> bool) -> A -> bool | |
l : list A | |
Hmon : forall p1 p2 : A -> bool, pred_subset p1 p2 -> pred_subset (O p1) (O p2) | |
Hfin : forall a : A, In a l | |
============================ | |
forall n : nat, | |
length (filter (iter O (n + 1) nil_pred) l) >= length (filter (iter O n nil_pred) l) + 1 -> | |
length (filter (iter O n nil_pred) l) >= n | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Theorem iter_aux_new {A: Type} (O: (A -> bool) -> (A -> bool)) (l: list A):
mon O ->
(forall a: A, In a l) ->
forall (n : nat), (forall a:A, iter O n nil_pred a = true <-> iter O (n+1) nil_pred a = true) /
card l (iter O n nil_pred) >= n.
Proof.
intros Hmon Hfin n. specialize (iter_aux O l Hmon Hfin n); intros.
destruct H as [H | H]. left. assumption.
right. unfold mon in Hmon. unfold card in H; unfold card.
(* specialize (increasing O Hmon); intros Hinc.
unfold pred_subset in Hinc. *)
generalize dependent n. induction n.
intros. omega.
intros.
Goal is
A : Type
O : (A -> bool) -> A -> bool
l : list A
Hmon : forall p1 p2 : A -> bool, pred_subset p1 p2 -> pred_subset (O p1) (O p2)
Hfin : forall a : A, In a l
n : nat
IHn : length (filter (iter O (n + 1) nil_pred) l) >= length (filter (iter O n nil_pred) l) + 1 ->
length (filter (iter O n nil_pred) l) >= n
H : length (filter (iter O (S n + 1) nil_pred) l) >=
length (filter (iter O (S n) nil_pred) l) + 1
length (filter (iter O (S n) nil_pred) l) >= S n