Created
August 25, 2016 03:18
-
-
Save mukeshtiwari/e37bc415c7afa6053c1e074f0c215ec8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Theorem iter_fin {A: Type} (k: nat) (O: (A -> bool) -> (A -> bool)) : | |
mon O -> bounded_card A k -> | |
forall n: nat, forall a: A, iter O n nil_pred a = true -> iter O k nil_pred a = true. | |
Proof. | |
intros Hmon Hboun; unfold bounded_card in Hboun. | |
destruct Hboun as [l [Hin Hlen]]. intros n. | |
assert (Hle : k < n \/ k >= n) by omega. | |
destruct Hle as [Hlel | Hler]; swap 1 2. | |
destruct (iter_aux_newagain O l Hmon Hin k). intros a Hiter. | |
specialize (increasing O Hmon); intros. unfold pred_subset in H0. | |
(* induction on Hler *) | |
induction Hler. assumption. | |
replace (S m) with (plus m 1); swap 1 2. omega. | |
apply H0. specialize (H0 m). | |
A : Type | |
O : (A -> bool) -> A -> bool | |
Hmon : mon O | |
l : list A | |
Hin : forall a : A, In a l | |
m : nat | |
Hlen : length l <= S m | |
n : nat | |
Hler : n <= m | |
H : forall a : A, iter O (S m) nil_pred a = true <-> iter O (S m + 1) nil_pred a = true | |
a : A | |
Hiter : iter O n nil_pred a = true | |
H0 : forall a : A, iter O m nil_pred a = true -> iter O (m + 1) nil_pred a = true | |
IHHler : length l <= m -> | |
(forall a : A, iter O m nil_pred a = true <-> iter O (m + 1) nil_pred a = true) -> | |
iter O m nil_pred a = true | |
============================ | |
iter O m nil_pred a = true | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
A : Type
k : nat
O : (A -> bool) -> A -> bool
Hmon : mon O
l : list A
Hin : forall a : A, In a l
Hlen : length l <= k
a : A
m : nat
H : iter O (S m) nil_pred a = true
Hl : forall a : A, iter O k nil_pred a = true <-> iter O (k + 1) nil_pred a = true
Hlel : S k <= m
IHHlel : iter O m nil_pred a = true -> iter O k nil_pred a = true
iter O k nil_pred a = true
subgoal 2 (ID 387) is:
iter O k nil_pred a = true