Skip to content

Instantly share code, notes, and snippets.

@mundya
Last active August 29, 2015 13:57
Show Gist options
  • Save mundya/9668428 to your computer and use it in GitHub Desktop.
Save mundya/9668428 to your computer and use it in GitHub Desktop.
"""Attempt #1 at organizing neuron models
- We specify types of neurons using subclasses of Neuron
- This includes things like LIF vs HH and also Float vs Fixed, Rate vs Spiking
- We build a NeuronPool object which actually has code for running neurons
- We keep a list of known Neuron types around so if we're asked for just
a Rate neuron, we can pick the first on on the list that matches
Modified from @tcstewar's original to remove a fixed point divide.
"""
import numpy as np
"""
Neuron type specifications
"""
class Neuron(object):
pass
class LIF(Neuron):
def __init__(self, tau_rc=0.02, tau_ref=0.002):
self.tau_rc = tau_rc
self.tau_ref = tau_ref
class Rate(Neuron):
pass
class Spiking(Neuron):
pass
class Fixed(Neuron):
pass
class Izhikevich(Neuron):
def __init__(self, a=0.02, b=0.2, c=-65, d=8):
self.a = a
self.b = b
self.c = c
self.d = d
"""
Base class for neuron pools
Pass in a list of neuron_types to set parameters
"""
class NeuronPool:
def __init__(self, n_neurons, neuron_types=None):
if neuron_types is None:
neuron_types = self.neuron_types
for n in neuron_types:
for key, value in n.__dict__.items():
if not key.startswith('_'):
setattr(self, key, value)
self.make(n_neurons)
def make(self, n_neurons):
raise NotImplementedError('NeuronPools must provide "make"')
def step(self, dt, J):
raise NotImplementedError('NeuronPools must provide "step"')
"""
Various neuron models
"""
class LIFRatePool(NeuronPool):
neuron_type = [LIF, Rate]
def make(self, n_neurons):
pass
def step(self, dt, J):
old = np.seterr(divide='ignore', invalid='ignore')
try:
r = 1.0 / (self.tau_ref + self.tau_rc * np.log1p(1.0 / (J-1)))
r[J <= 1] = 0
finally:
np.seterr(**old)
return r * dt # multiply by dt to do rate per timestep
class LIFSpikingPool(NeuronPool):
neuron_type = [LIF, Spiking]
def make(self, n_neurons):
self.voltage = np.zeros(n_neurons)
self.refractory_time = np.zeros(n_neurons)
def step(self, dt, J):
dv = (dt / self.tau_rc) * (J - self.voltage)
self.voltage += dv
self.voltage[self.voltage < 0] = 0
self.refractory_time -= dt
self.voltage *= (1-self.refractory_time / dt).clip(0, 1)
spiked = self.voltage > 1
overshoot = (self.voltage[spiked > 0] - 1) / dv[spiked > 0]
spiketime = dt * (1 - overshoot)
self.voltage[spiked > 0] = 0
self.refractory_time[spiked > 0] = self.tau_ref + spiketime
return spiked
class LIFFixedPool(NeuronPool):
neuron_type = [LIF, Spiking, Fixed]
def make(self, n_neurons):
self.voltage = np.zeros(n_neurons, dtype='i32')
self.refractory_time = np.zeros(n_neurons, dtype='u8')
self.dt = None
self.lfsr = 1
def step(self, dt, J):
if self.dt != dt:
self.dt = dt
self.dt_over_tau_rc = int(dt * 0x10000 / self.tau_rc)
self.ref_steps = int(self.tau_ref / dt)
J = np.asarray(J * 0x10000, dtype='i32')
dv = ((J - self.voltage) * self.dt_over_tau_rc) >> 16
dv[self.refractory_time > 0] = 0
self.refractory_time[self.refractory_time > 0] -= 1
self.voltage += dv
self.voltage[self.voltage < 0] = 0
spiked = self.voltage > 0x10000
self.refractory_time[spiked > 0] = self.ref_steps
# randomly adjust the refractory period to account for overshoot
for i in np.where(spiked > 0)[0]:
p = (self.voltage[i] - 0x10000) * (2**-16)
if (self.lfsr * 2**-32) * dv[i] < p:
self.refractory_time[i] -= 1
self.lfsr = (self.lfsr >> 1) ^ (-(self.lfsr & 0x1) & 0xB400)
self.voltage[spiked > 0] = 0
return spiked
class IzhikevichPool(NeuronPool):
neuron_type = [Izhikevich, Spiking]
def make(self, n_neurons):
self.v = np.zeros(n_neurons) + self.c
self.u = self.b * self.v
def step(self, dt, J):
dv = (0.04 * self.v ** 2 + 5 * self.v + 140 - self.u + J) * 1000
du = (self.a * (self.b * self.v - self.u)) * 1000
self.v += dv * dt
self.u += du * dt
spiked = self.v >= 30
self.v[spiked > 0] = self.c
self.u[spiked > 0] = self.u[spiked > 0] + self.d
return spiked
"""
List of known neuron models, in order of preference
"""
neuron_models = [
LIFSpikingPool,
LIFRatePool,
LIFFixedPool,
IzhikevichPool,
]
"""
Create a pool of neurons, given the required type specifications
"""
import inspect
def create(n_neurons, neuron_type):
# make sure it's a list
try:
len(neuron_type)
except TypeError:
neuron_type = [neuron_type]
# make sure elements in the list are instances, not classes
for i, type in enumerate(neuron_type):
if inspect.isclass(type):
neuron_type[i] = type()
# look through the list of neuron models to see if we can
# find a match
for model in neuron_models:
for type in neuron_type:
if type.__class__ not in model.neuron_type:
break
else:
return model(n_neurons, neuron_type)
raise Exception('Could not find suitable neuron model')
if __name__ == '__main__':
spiking = create(100, [LIF, Spiking])
rate = create(100, [LIF, Rate])
fixed = create(100, [LIF, Fixed])
iz = create(100, [Izhikevich])
#iz = create(100, [Izhikevich(a=0.02, b=0.2, c=-50, d=2)])
J = np.linspace(-2, 10, 100)
dt = 0.001
T = 1
spiking_data = []
rate_data = []
iz_data = []
fixed_data = []
v = []
for i in range(int(T/dt)):
spiking_data.append(spiking.step(dt, J))
rate_data.append(rate.step(dt, J))
iz_data.append(iz.step(dt, J))
fixed_data.append(fixed.step(dt, J))
v.append(fixed.voltage[-1])
rate_tuning = np.sum(rate_data, axis=0)/T
spiking_tuning = np.sum(spiking_data, axis=0)/T
iz_tuning = np.sum(iz_data, axis=0)/T
fixed_tuning = np.sum(fixed_data, axis=0)/T
import pylab
pylab.subplot(2, 1, 1)
pylab.plot(J, rate_tuning, label="Rate")
pylab.plot(J, spiking_tuning, label="Spike")
pylab.plot(J, iz_tuning, label="IZ")
pylab.plot(J, fixed_tuning, linewidth=4, label="Fixed point")
pylab.subplot(2, 1, 2)
pylab.plot(v)
#pylab.plot(np.array(fixed_data)[:,-1])
pylab.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment