Last active
August 29, 2015 13:58
-
-
Save munthe/10103474 to your computer and use it in GitHub Desktop.
Modellering af fysiologiskesystemer, Home Assginment II
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Home assignment II, exercise 1: Lyapunov exponents | |
% | |
% Emil Munthe, 7. April 2014 | |
% | |
function [] = ex1(a) | |
%% Init | |
if nargin < 1, a = 0.2; end | |
t = linspace(0, 50, 1500); | |
yzero = [0.1 0 0]; | |
%% Solve | |
y = roesler(a,t,yzero); | |
%% Plot x,y plane | |
figure(1) | |
plot(y(1,:),y(2,:)) | |
print(gcf,'-depsc2',['phaseplot' '_a=' num2str(a*100) '.eps']) | |
%% Liapunov coeefficients | |
yzero(1) = yzero(1) + 1e-5; | |
yl = roesler(a,t,yzero); | |
delta = distance(y,yl); | |
[r,m,b] = regression(t,log(delta)); | |
figure(2) | |
plot(t, log(delta),... | |
t, m*t+b) | |
print(gcf,'-depsc2',['deltaplot' '_a=' num2str(a*100) '.eps']) | |
fprintf('Slope of ln || delta(t) || with a = %f is %f \n ',a,m) | |
end | |
function delta = distance(y1,y2) | |
delta = sqrt(sum((y2-y1).^2)); | |
end | |
function [y] = roesler(a,t,yzero) | |
b = 0.2; | |
c = 5.7; | |
if nargin < 2,t = linspace(0, 50, 1500); end | |
tspan = [0 200]; | |
if nargin < 3, yzero = [0.1 | |
0 | |
0]; | |
end | |
% Integration | |
sol = ode45(@roesler_diff, tspan, yzero); | |
% Interpolation | |
y = deval(sol,t,[1 2 3]); | |
function xdiff = roesler_diff(t,x) | |
xdiff = [-x(2)-x(3) | |
x(1) + a*x(2) | |
b + x(3)*(x(1)-c)]; | |
end | |
end |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Home assignment II, exercise 2: Medicine concentration | |
% | |
% Emil Munthe, 8. April 2014 | |
% | |
%% Init | |
w = 80; | |
VA = 0.95 * w; | |
alpha = 0.28; | |
%% a) | |
m = 500e-6; | |
c0 = m / VA; | |
fprintf('a) Initial plasma concentration is %e\n',c0) | |
h = 8; | |
p = 6; | |
t = 0:1/60:h; | |
c = 0; | |
for i = 1:p | |
c_tmp = (c(end)+c0)*exp(-alpha*t); | |
c = [c(1:end-1) c_tmp]; | |
end | |
t = linspace(0,h*p,length(c)); | |
figure(1) | |
plot(t,c) | |
%% b) | |
m = 125e-6; | |
c0 = m / VA; | |
fprintf('b) Initial plasma concentration is %e\n',c0) | |
h = 2; | |
p = 24; | |
t = 0:1/60:h; | |
c = 0; | |
for i = 1:p | |
c_tmp = (c(end)+c0)*exp(-alpha*t); | |
c = [c(1:end-1) c_tmp]; | |
end | |
t = linspace(0,h*p,length(c)); | |
figure(1) | |
hold on | |
plot(t,c,'r') | |
hold off | |
%% c) | |
%Numbers from b), measured on the plot | |
c_max = 3.818e-6; | |
c_min = 2.201e-6; | |
m = 285e-6; | |
c0 = m / VA; | |
md = 125e-6; | |
cd = md /VA; | |
h = 2; | |
p = 24; | |
t = 0:1/60:h; | |
% Initial dosis: | |
c = c0*exp(-alpha*t); | |
% Cyclic dodis, cd: | |
for i = 1:p | |
c_tmp = (c(end)+cd)*exp(-alpha*t); | |
c = [c(1:end-1) c_tmp]; | |
end | |
t = linspace(0,h*p,length(c)); | |
fprintf('Min of concentration in b) %e and in c) %e\n',c_min, min(c)) | |
fprintf('Max of concentration in b) %e and in c) %e\n',c_max, max(c)) | |
figure(1) | |
hold on | |
plot(t,c,'g') | |
hold off | |
%% d) | |
t = [10 20 30 45 60]; | |
c = [29.6 17.8 12.6 10.4 6.0]; | |
m = 30e-6; | |
[r,a,b] = regression(t,log(c)); | |
VA = (m/exp(b))*1e6; | |
figure(2) | |
plot(t,log(c)) | |
fprintf('Rats have a apparent volume of distribution of %f l/kg and elimination rate constant of %f /h \n',VA,-a) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment