Skip to content

Instantly share code, notes, and snippets.

@munthe
Created March 24, 2019 14:28
Show Gist options
  • Save munthe/f087020946887122c181ece750a5bf33 to your computer and use it in GitHub Desktop.
Save munthe/f087020946887122c181ece750a5bf33 to your computer and use it in GitHub Desktop.
Convert AUs from OpenFace FeatureExtraction to emotions using model from wikipedia.
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pylab as plt
import matplotlib.animation as animation
get_ipython().run_line_magic('matplotlib', 'inline')
get_ipython().run_line_magic('matplotlib', 'notebook')
import seaborn as sns
sns.set(context="talk")
# In[2]:
sti = "./processed/3zmhiYso.csv"
df = pd.read_csv(sti) #
df = df.set_index(" timestamp")
# In[3]:
def get_ausr(ints):
return [" AU%02d_r"% i for i in ints]
def get_ausc(ints):
return [" AU%02d_c"% i for i in ints]
# In[4]:
# .values tager værdierne ud til de specifikke AUs for hver følelse, som dereter bliver summereret rækkevis.
df["happiness"] = df[get_ausr([6,12])].values.mean(1)
df["sadnes"] = df[get_ausr([1,4,15])].values.mean(1)
df["surprise"] = df[get_ausr([1,2,5,26])].values.mean(1)
df["fear"] = df[get_ausr([1,2,4,5,7,20,26])].values.mean(1)
df["anger"] = df[get_ausr([1,2])].values.mean(1)
df["disgust"] = df[get_ausr([1,15])].values.mean(1)
df["contempt"] = df[get_ausr([12,14])].values.mean(1)
# In[5]:
df[
["happiness","sadnes","surprise","fear","anger","disgust","contempt"]
].rolling(100).mean().plot(figsize=(20,10))
# In[6]:
df[get_ausr([1,2,4,5,7,9,12,14,15,20,23,26])[:]].rolling(100).mean().plot(figsize=(20,10))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment