Last active
December 22, 2021 10:31
-
-
Save mur6/44ce0ba48e056c9e6d8676ee636d514a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torch.utils.data import DataLoader | |
from torchvision import datasets | |
from torchvision.transforms import ToTensor, Lambda | |
training_data = datasets.FashionMNIST( | |
root="data", | |
train=True, | |
download=True, | |
transform=ToTensor() | |
) | |
test_data = datasets.FashionMNIST( | |
root="data", | |
train=False, | |
download=True, | |
transform=ToTensor() | |
) | |
batch_size = 128 | |
train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) | |
test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=True) | |
class NeuralNetwork(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.features = nn.Sequential( | |
nn.Conv2d(1, 32, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2), | |
nn.Conv2d(32, 64, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2), | |
) | |
self.classifier = nn.Sequential( | |
nn.Dropout(), | |
nn.Linear(64 * 7 * 7, 128), | |
nn.ReLU(), | |
nn.Dropout(), | |
nn.Linear(128, 10), | |
nn.LogSoftmax(dim=1), | |
) | |
#self.flatten = nn.Flatten() | |
#self.linear_relu_stack = nn.Sequential( | |
# nn.Linear(28*28, 512), | |
# nn.ReLU(), | |
# nn.Linear(512, 512), | |
# nn.ReLU(), | |
# nn.Linear(512, 10), | |
#) | |
def forward(self, x): | |
#x = self.flatten(x) | |
#logits = self.linear_relu_stack(x) | |
x = self.features(x) | |
x = torch.flatten(x, 1) | |
x = self.classifier(x) | |
return x | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = NeuralNetwork().to(device) | |
learning_rate = 1e-3 | |
loss_fn = nn.NLLLoss() | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | |
def train_loop(dataloader, model, loss_fn, optimizer): | |
size = len(dataloader.dataset) | |
for batch, (X, y) in enumerate(dataloader): | |
X, y = X.to(device), y.to(device) | |
# Compute prediction and loss | |
pred = model(X) | |
loss = loss_fn(pred, y) | |
# Backpropagation | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if batch % 100 == 0: | |
loss, current = loss.item(), batch * len(X) | |
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") | |
def test_loop(dataloader, model, loss_fn): | |
size = len(dataloader.dataset) | |
num_batches = len(dataloader) | |
test_loss, correct = 0, 0 | |
with torch.no_grad(): | |
for X, y in dataloader: | |
X, y = X.to(device), y.to(device) | |
pred = model(X) | |
test_loss += loss_fn(pred, y).item() | |
correct += (pred.argmax(1) == y).type(torch.float).sum().item() | |
test_loss /= num_batches | |
correct /= size | |
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") | |
loss_fn = nn.CrossEntropyLoss() | |
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) | |
epochs = 10 | |
for t in range(epochs): | |
print(f"Epoch {t+1}\n-------------------------------") | |
train_loop(train_dataloader, model, loss_fn, optimizer) | |
test_loop(test_dataloader, model, loss_fn) | |
print("Done!") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment