Created
December 22, 2021 10:38
-
-
Save mur6/63a7671272b87dfa5e88a91e37140933 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torch.utils.data import DataLoader | |
from torchvision import datasets | |
import torchvision | |
from torchvision.transforms import ToTensor | |
import torchvision.transforms as transforms | |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
to_rgb = transforms.Lambda(lambda image: image.convert('RGB')) | |
my_transform = transforms.Compose([ | |
transforms.Resize(224), | |
to_rgb, | |
ToTensor(), | |
normalize]) | |
def get_dataloaders(): | |
training_data = datasets.FashionMNIST( | |
root="data", | |
train=True, | |
download=True, | |
transform=my_transform | |
) | |
test_data = datasets.FashionMNIST( | |
root="data", | |
train=False, | |
download=True, | |
transform=my_transform | |
) | |
batch_size = 256 | |
train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) | |
test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=True) | |
return train_dataloader, test_dataloader | |
def get_pretrained_model(): | |
model = torch.hub.load('pytorch/vision:v0.9.0', 'resnet18', pretrained=True) | |
#model = torchvision.models.vgg16(pretrained=True) | |
model.fc = torch.nn.Linear(512, 10) | |
return model | |
def get_pretrained_model_vgg(): | |
model = torchvision.models.vgg11_bn(pretrained=True) | |
#model = torch.hub.load('pytorch/vision:v0.10.0', 'vgg16', pretrained=True) | |
#for param in model.parameters(): | |
# param.requires_grad = False | |
#first_conv_layer = [nn.Conv2d(3, 3, kernel_size=3, padding=1, bias=True)] | |
#first_conv_layer.extend(list(model.features)) | |
#model.features= nn.Sequential(*first_conv_layer) | |
model.classifier[-1] = torch.nn.Linear(4096, 10) | |
return model | |
def get_pretrained_model_mobilenet(): | |
model = torchvision.models.mobilenet.mobilenet_v2(pretrained=True) | |
#print(model) | |
for param in model.parameters(): | |
param.requires_grad = False | |
model.classifier[-1] = torch.nn.Linear(1280, 10) | |
return model | |
def train_loop(dataloader, device, model, loss_fn, optimizer): | |
size = len(dataloader.dataset) | |
num_batches = len(dataloader) | |
for batch, (X, y) in enumerate(dataloader): | |
X, y = X.to(device), y.to(device) | |
# Compute prediction and loss | |
pred = model(X) | |
loss = loss_fn(pred, y) | |
# Backpropagation | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if batch % 100 == 0: | |
loss, current = loss.item(), batch * len(X) | |
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") | |
print(f"sample_size={size} num_batches={num_batches}") | |
def test_loop(dataloader, device, model, loss_fn): | |
size = len(dataloader.dataset) | |
num_batches = len(dataloader) | |
test_loss, correct = 0, 0 | |
with torch.no_grad(): | |
for X, y in dataloader: | |
X, y = X.to(device), y.to(device) | |
pred = model(X) | |
test_loss += loss_fn(pred, y).item() | |
correct += (pred.argmax(1) == y).type(torch.float).sum().item() | |
test_loss /= num_batches | |
correct /= size | |
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") | |
def main(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
train_dataloader, test_dataloader = get_dataloaders() | |
model = get_pretrained_model() | |
model = model.to(device) | |
learning_rate = 0.0005 | |
criterion = nn.CrossEntropyLoss() | |
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) | |
epochs = 10 | |
for t in range(epochs): | |
print(f"Epoch {t+1}\n-------------------------------") | |
train_loop(train_dataloader, device, model, criterion, optimizer) | |
test_loop(test_dataloader, device, model, criterion) | |
main() | |
print("Done!") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment