Created
October 12, 2017 07:51
-
-
Save musyoku/ad203d1cb24c60b0926043125e676c71 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from __future__ import division | |
| from __future__ import print_function | |
| import argparse, chainer, time, sys | |
| import numpy as np | |
| import chainer.functions as F | |
| from chainer import cuda | |
| from model import Model | |
| from aae.optim import Optimizer, GradientClipping | |
| from aae.utils import onehot, printr, clear_console | |
| from aae.dataset.semi_supervised import Dataset | |
| import aae.sampler as sampler | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--batchsize", "-b", type=int, default=64) | |
| parser.add_argument("--total-epochs", "-e", type=int, default=5000) | |
| parser.add_argument("--num-labeled-data", "-nl", type=int, default=10000) | |
| parser.add_argument("--gpu-device", "-g", type=int, default=0) | |
| parser.add_argument("--grad-clip", "-gc", type=float, default=5) | |
| parser.add_argument("--learning-rate", "-lr", type=float, default=0.0001) | |
| parser.add_argument("--momentum", "-mo", type=float, default=0.5) | |
| parser.add_argument("--optimizer", "-opt", type=str, default="adam") | |
| parser.add_argument("--seed", type=int, default=0) | |
| parser.add_argument("--model", "-m", type=str, default="model.hdf5") | |
| args = parser.parse_args() | |
| np.random.seed(args.seed) | |
| model = Model() | |
| model.load(args.model) | |
| mnist_train, mnist_test = chainer.datasets.get_mnist() | |
| images_train, labels_train = mnist_train._datasets | |
| images_test, labels_test = mnist_test._datasets | |
| # normalize | |
| images_train = (images_train - 0.5) * 2 | |
| images_test = (images_test - 0.5) * 2 | |
| dataset = Dataset(train=(images_train, labels_train), | |
| test=(images_test, labels_test), | |
| num_labeled_data=args.num_labeled_data, | |
| num_classes=model.ndim_y - 1, | |
| num_extra_classes=1) | |
| print("#labeled: {}".format(dataset.get_num_labeled_data())) | |
| print("#unlabeled: {}".format(dataset.get_num_unlabeled_data())) | |
| _, labels = dataset.get_labeled_data() | |
| total_iterations_train = len(images_train) // args.batchsize | |
| # optimizers | |
| optimizer_encoder = Optimizer(args.optimizer, args.learning_rate, args.momentum) | |
| optimizer_encoder.setup(model.encoder) | |
| if args.grad_clip > 0: | |
| optimizer_encoder.add_hook(GradientClipping(args.grad_clip)) | |
| optimizer_decoder = Optimizer(args.optimizer, args.learning_rate, args.momentum) | |
| optimizer_decoder.setup(model.decoder) | |
| if args.grad_clip > 0: | |
| optimizer_decoder.add_hook(GradientClipping(args.grad_clip)) | |
| optimizer_discriminator = Optimizer(args.optimizer, args.learning_rate, args.momentum) | |
| optimizer_discriminator.setup(model.discriminator) | |
| if args.grad_clip > 0: | |
| optimizer_discriminator.add_hook(GradientClipping(args.grad_clip)) | |
| using_gpu = False | |
| if args.gpu_device >= 0: | |
| cuda.get_device(args.gpu_device).use() | |
| model.to_gpu() | |
| using_gpu = True | |
| xp = model.xp | |
| # 0 -> true sample | |
| # 1 -> generated sample | |
| class_true = np.zeros(args.batchsize, dtype=np.int32) | |
| class_fake = np.ones(args.batchsize, dtype=np.int32) | |
| if using_gpu: | |
| class_true = cuda.to_gpu(class_true) | |
| class_fake = cuda.to_gpu(class_fake) | |
| y_onehot_u = xp.zeros((1, model.ndim_y), dtype=xp.float32) | |
| y_onehot_u[0, -1] = 1 # turn on the extra class | |
| y_onehot_u = xp.repeat(y_onehot_u, args.batchsize, axis=0) | |
| training_start_time = time.time() | |
| for epoch in range(args.total_epochs): | |
| sum_loss_generator = 0 | |
| sum_loss_discriminator = 0 | |
| sum_loss_autoencoder = 0 | |
| sum_discriminator_confidence_true_l = 0 | |
| sum_discriminator_confidence_fake_l = 0 | |
| sum_discriminator_confidence_true_u = 0 | |
| sum_discriminator_confidence_fake_u = 0 | |
| epoch_start_time = time.time() | |
| dataset.shuffle() | |
| # training | |
| for itr in range(total_iterations_train): | |
| # update model parameters | |
| with chainer.using_config("train", True): | |
| # sample minibatch | |
| x_u = dataset.sample_unlabeled_minibatch(args.batchsize, gpu=using_gpu) | |
| ### reconstruction phase ### | |
| if True: | |
| z_u = model.encode_x_z(x_u) | |
| x_reconstruction_u = model.decode_z_x(z_u) | |
| loss_reconstruction = F.mean_squared_error(x_u, x_reconstruction_u) | |
| model.cleargrads() | |
| loss_reconstruction.backward() | |
| optimizer_encoder.update() | |
| optimizer_decoder.update() | |
| ### adversarial phase ### | |
| if True: | |
| z_fake_u = model.encode_x_z(x_u) | |
| if False: | |
| z_true_u = sampler.swiss_roll(args.batchsize, model.ndim_z, model.ndim_y - 1) | |
| else: | |
| z_true_u = sampler.gaussian_mixture(args.batchsize, model.ndim_z, model.ndim_y - 1) | |
| if using_gpu: | |
| z_true_u = cuda.to_gpu(z_true_u) | |
| dz_true_u = model.discriminate(y_onehot_u, z_true_u, apply_softmax=False) | |
| dz_fake_u = model.discriminate(y_onehot_u, z_fake_u, apply_softmax=False) | |
| discriminator_confidence_true_u = float(xp.mean(F.softmax(dz_true_u).data[:, 0])) | |
| discriminator_confidence_fake_u = float(xp.mean(F.softmax(dz_fake_u).data[:, 1])) | |
| loss_discriminator = (F.softmax_cross_entropy(dz_true_u, class_true) | |
| + F.softmax_cross_entropy(dz_fake_u, class_fake)) | |
| model.cleargrads() | |
| loss_discriminator.backward() | |
| optimizer_discriminator.update() | |
| ### generator phase ### | |
| if True: | |
| z_fake_u = model.encode_x_z(x_u) | |
| dz_fake_u = model.discriminate(y_onehot_u, z_fake_u, apply_softmax=False) | |
| loss_generator = F.softmax_cross_entropy(dz_fake_u, class_true) | |
| model.cleargrads() | |
| loss_generator.backward() | |
| optimizer_encoder.update() | |
| sum_loss_discriminator += float(loss_discriminator.data) | |
| sum_loss_generator += float(loss_generator.data) | |
| sum_loss_autoencoder += float(loss_reconstruction.data) | |
| sum_discriminator_confidence_true_u += discriminator_confidence_true_u | |
| sum_discriminator_confidence_fake_u += discriminator_confidence_fake_u | |
| printr("Training ... {:3.0f}% ({}/{})".format((itr + 1) / total_iterations_train * 100, itr + 1, total_iterations_train)) | |
| model.save(args.model) | |
| clear_console() | |
| print("Epoch {} done in {} sec - loss: g={:.5g}, d={:.5g}, a={:.5g} - disc_u: true={:.1f}%, fake={:.1f}% - total {} min".format( | |
| epoch + 1, int(time.time() - epoch_start_time), | |
| sum_loss_generator / total_iterations_train, | |
| sum_loss_discriminator / total_iterations_train, | |
| sum_loss_autoencoder / total_iterations_train, | |
| sum_discriminator_confidence_true_u / total_iterations_train * 100, | |
| sum_discriminator_confidence_fake_u / total_iterations_train * 100, | |
| int((time.time() - training_start_time) // 60))) | |
| if __name__ == "__main__": | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment