Created
April 17, 2024 10:40
-
-
Save mutaguchi/23c5cfcf872fb951af2c9dc67b5a52d2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
models = { | |
"stablelm": "stabilityai/japanese-stablelm-base-gamma-7b", | |
"chatntq": "NTQAI/chatntq-ja-7b-v1.0", | |
"mistral": "mistralai/Mistral-7B-v0.1", | |
"starling": "Nexusflow/Starling-LM-7B-beta", | |
"antler": "Elizezen/Antler-7B", | |
} | |
def load_model(model_name): | |
return { | |
"name": model_name, | |
"model": AutoModelForCausalLM.from_pretrained(models[model_name], torch_dtype=torch.bfloat16, device_map="cpu") | |
} | |
# ChatVectorを適用する対象モデル | |
cp_model = load_model("antler") | |
# ChatVector1を抽出するベースモデルとinstructionモデル | |
base_model1 = load_model("stablelm") | |
inst_model1 = load_model("chatntq") | |
ratio1 = 0.5 # マージ比率 | |
# ChatVector2を抽出するベースモデルとinstructionモデル(Noneでも可) | |
base_model2 = load_model("mistral") | |
inst_model2 = load_model("starling") | |
ratio2 = 0.5 # マージ比率 | |
skip_layers = ["model.embed_tokens.weight", "lm_head.weight"] | |
for k, v in cp_model["model"].state_dict().items(): | |
if (k in skip_layers) or ("layernorm" in k): | |
continue | |
chat_vector1 = inst_model1["model"].state_dict()[ | |
k] - base_model1["model"].state_dict()[k] | |
chat_vector2 = None | |
if base_model2 is not None and inst_model2 is not None: | |
chat_vector2 = inst_model2["model"].state_dict( | |
)[k] - base_model2["model"].state_dict()[k] | |
new_v = v + ratio1 * chat_vector1.to(v.device) | |
if chat_vector2 is not None: | |
new_v += ratio2 * chat_vector2.to(v.device) | |
v.copy_(new_v) | |
# 保存 | |
path = f"./{cp_model['name']}-{inst_model1['name']}_{ratio1}-{inst_model2['name']}_{ratio2}-7B" | |
cp_model["model"].save_pretrained(path) | |
AutoTokenizer.from_pretrained( | |
models[cp_model['name']]).save_pretrained(path) |
Antlerをベースにしたモデルは創造的な文章を書きますが、設定や指示に従ったり、チャット的な通常の会話は苦手です。
その場合、以下のようなchatntqをベースとしたレシピにすると、創造性は減少するものの、設定や指示が入りやすく、チャット的な会話が成立しやすいモデルとなります。
chatntq + 0.5 * (starling - mistral) + 1.0 * (Antler - StableLM)
コードは以下の通り。
# ChatVectorを適用する対象モデル
cp_model = load_model("chatntq")
# ChatVector1を抽出するベースモデルとinstructionモデル
base_model1 = load_model("mistral")
inst_model1 = load_model("starling")
ratio1 = 0.5 # マージ比率
# ChatVector2を抽出するベースモデルとinstructionモデル(Noneでも可)
base_model2 = load_model("stablelm")
inst_model2 = load_model("antler")
ratio2 = 1.0 # マージ比率
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Mistral-7B派生の日本語モデルに、日本語Chat Vectorと英語Chat Vectorを0.5:0.5の比率でマージします。
レシピ:
Antler + 0.5 * (chatntq - StableLM) + 0.5 * (starling - mistral)
7Bモデルを5個用いるので、75GBくらいのファイルダウンロードが発生します。
モデル(.safetensors)はカレントディレクトリに生成されます。トークナイザーは、Antlerのものを自動で保存します。
モデル生成後は適宜、GGUFなどで量子化して利用して下さい。
参考:Chat Vectorを使って日本語LLMをチャットモデルに改造する #Python - Qiita