Skip to content

Instantly share code, notes, and snippets.

@mutaguchi
Created May 22, 2023 05:15
Show Gist options
  • Save mutaguchi/d36ea7156dfff5aad4af31ff035c424d to your computer and use it in GitHub Desktop.
Save mutaguchi/d36ea7156dfff5aad4af31ff035c424d to your computer and use it in GitHub Desktop.
# based on StableLM chat
# https://huggingface.co/spaces/stabilityai/stablelm-tuned-alpha-chat
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import time
import numpy as np
from torch.nn import functional as F
import os
from threading import Thread
print(f"Starting to load the model to memory")
model_name = "rinna/japanese-gpt-neox-3.6b-instruction-sft"
m = AutoModelForCausalLM.from_pretrained(
model_name,device_map='auto', torch_dtype=torch.float16)
tok = AutoTokenizer.from_pretrained(model_name, use_fast=False)
print(f"Sucessfully loaded the model to the memory")
start_message = ""
def user(message, history):
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def chat(curr_system_message, history):
# Construct the input message string for the model by concatenating the current system message and conversation history
curr_system_message = ""
messages = curr_system_message + \
"<NL>".join(["<NL>".join(["ユーザー: "+item[0], "システム: "+item[1]])
for item in history])
# Tokenize the messages string
token_ids = tok.encode(messages, add_special_tokens=False, return_tensors="pt")
streamer = TextIteratorStreamer(tok, skip_prompt=True)
generation_args = [token_ids.to(m.device)]
generation_kwargs = dict(
streamer=streamer,
do_sample=True,
max_new_tokens=256,
temperature=0.7,
pad_token_id=tok.pad_token_id,
bos_token_id=tok.bos_token_id,
eos_token_id=tok.eos_token_id
)
t = Thread(target=m.generate, args=generation_args, kwargs=generation_kwargs)
t.start()
# print(history)
# Initialize an empty string to store the generated text
partial_text = ""
for new_text in streamer:
# print(new_text)
partial_text += new_text
history[-1][1] = partial_text
# Yield an empty string to cleanup the message textbox and the updated conversation history
yield history
return partial_text
with gr.Blocks() as demo:
# history = gr.State([])
gr.Markdown("## Rinna japanese-gpt-neox-3.6b Chat")
chatbot = gr.Chatbot().style(height=500)
with gr.Row():
with gr.Column():
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
show_label=False).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
system_msg = gr.Textbox(
start_message, label="System Message", interactive=False, visible=False)
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
stop.click(fn=None, inputs=None, outputs=None, cancels=[
submit_event, submit_click_event], queue=False)
clear.click(lambda: None, None, [chatbot], queue=False)
demo.queue(max_size=32, concurrency_count=2)
demo.launch()
@mutaguchi
Copy link
Author

image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment