Last active
April 24, 2024 19:10
-
-
Save mvanga/62a9bd4b85abe37305537d7bf754d7e9 to your computer and use it in GitHub Desktop.
Basic Music Theory in ~200 Lines of Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# The code for my article with the same name. You can find it at the URL below: | |
# https://www.mvanga.com/blog/basic-music-theory-in-200-lines-of-python | |
# MIT License | |
# | |
# Copyright (c) 2021 Manohar Vanga | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import pprint | |
import re | |
# The musical alphabet consists of seven letter from A through G | |
alphabet = ['C', 'D', 'E', 'F', 'G', 'A', 'B'] | |
# The twelve notes in Western music, along with their enharmonic equivalents | |
notes = [ | |
['B#', 'C', 'Dbb'], | |
['B##', 'C#', 'Db'], | |
['C##', 'D', 'Ebb'], | |
['D#', 'Eb', 'Fbb'], | |
['D##', 'E', 'Fb'], | |
['E#', 'F', 'Gbb'], | |
['E##', 'F#', 'Gb'], | |
['F##', 'G', 'Abb'], | |
['G#', 'Ab'], | |
['G##', 'A', 'Bbb'], | |
['A#', 'Bb', 'Cbb'], | |
['A##', 'B', 'Cb'], | |
] | |
def find_note_index(scale, search_note): | |
''' Given a scale, find the index of a particular note ''' | |
for i, note in enumerate(scale): | |
# Deal with situations where we have a list of enharmonic | |
# equivalents, as well as just a single note as and str. | |
if type(note) == list: | |
if search_note in note: | |
return i | |
elif type(note) == str: | |
if search_note == note: | |
return i | |
def rotate(scale, n): | |
''' Left-rotate a scale by n positions. ''' | |
return scale[n:] + scale[:n] | |
def chromatic(key): | |
''' Generate a chromatic scale in a given key. ''' | |
# Figure out how much to rotate the notes list by and return | |
# the rotated version. | |
num_rotations = find_note_index(notes, key) | |
return rotate(notes, num_rotations) | |
# Interval names that specify the distance between two notes | |
intervals = [ | |
['P1', 'd2'], # Perfect unison Diminished second | |
['m2', 'A1'], # Minor second Augmented unison | |
['M2', 'd3'], # Major second Diminished third | |
['m3', 'A2'], # Minor third Augmented second | |
['M3', 'd4'], # Major third Diminished fourth | |
['P4', 'A3'], # Perfect fourth Augmented third | |
['d5', 'A4'], # Diminished fifth Augmented fourth | |
['P5', 'd6'], # Perfect fifth Diminished sixth | |
['m6', 'A5'], # Minor sixth Augmented fifth | |
['M6', 'd7'], # Major sixth Diminished seventh | |
['m7', 'A6'], # Minor seventh Augmented sixth | |
['M7', 'd8'], # Major seventh Diminished octave | |
['P8', 'A7'], # Perfect octave Augmented seventh | |
] | |
# Interval names based off the notes of the major scale | |
intervals_major = [ | |
[ '1', 'bb2'], | |
['b2', '#1'], | |
[ '2', 'bb3', '9'], | |
['b3', '#2'], | |
[ '3', 'b4'], | |
[ '4', '#3', '11'], | |
['b5', '#4', '#11'], | |
[ '5', 'bb6'], | |
['b6', '#5'], | |
[ '6', 'bb7', '13'], | |
['b7', '#6'], | |
[ '7', 'b8'], | |
[ '8', '#7'], | |
] | |
def find_note_by_root(notes, root): | |
''' | |
Given a list of notes, find it's alphabet. Useful for figuring out which | |
enharmonic equivalent we must use in a particular scale. | |
''' | |
for note in notes: | |
if note[0] == root: | |
return note | |
def make_intervals(root): | |
labeled = {} | |
c = chromatic(root) | |
start_index = find_note_index(alphabet, root[0]) | |
for i, interval in enumerate(intervals): | |
for interval_name in interval: | |
interval_index = int(interval_name[1]) - 1 | |
note = c[i % len(c)] | |
note_root = alphabet[(start_index + interval_index) % len(alphabet)] | |
if note_root is not None: | |
labeled[interval_name] = find_note_by_root(note, note_root) | |
return labeled | |
def make_intervals_major(root): | |
labeled = {} | |
c = chromatic(root) | |
start_index = find_note_index(alphabet, root[0]) | |
for i, interval in enumerate(intervals_major): | |
for interval_name in interval: | |
interval_index = int(re.sub('[b#]', '', interval_name)) - 1 | |
note = c[i % len(c)] | |
note_root = alphabet[(start_index + interval_index) % len(alphabet)] | |
if note_root is not None: | |
labeled[interval_name] = find_note_by_root(note, note_root) | |
return labeled | |
def make_formula(formula, labeled): | |
''' | |
Given a comma-separated interval formula, and a set of labeled | |
notes in a key, return the notes of the formula. | |
''' | |
return [labeled[x] for x in formula.split(',')] | |
intervs = make_intervals('C') | |
print('Major :', ','.join(make_formula('P1,M2,M3,P4,P5,M6,M7,P8', intervs))) # Major | |
print('Minor :', ','.join(make_formula('P1,M2,m3,P4,P5,m6,m7,P8', intervs))) # Natural Minor | |
print('Mel. Minor:', ','.join(make_formula('P1,M2,m3,P4,P5,M6,M7,P8', intervs))) # Melodic Minor | |
print('Har. Minor:', ','.join(make_formula('P1,M2,m3,P4,P5,m6,M7,P8', intervs))) # Harmonic Minor | |
print('Major :', ','.join(make_formula('1,2,3,4,5,6,7', intervs))) # Major | |
formulas = { | |
# Scale formulas | |
'scales': { | |
# Basic chromatic scale | |
'chromatic': '1,b2,2,b3,3,4,b5,5,b6,6,b7,7', | |
# Major scale, its modes, and minor scale | |
'major': '1,2,3,4,5,6,7', | |
'minor': '1,2,b3,4,5,b6,b7', | |
# Melodic minor and its modes | |
'melodic_minor': '1,2,b3,4,5,6,7', | |
# Harmonic minor and its modes | |
'harmonic_minor': '1,2,b3,4,5,b6,7', | |
# Blues scales | |
'major_blues': '1,2,b3,3,5,6', | |
'minor_blues': '1,b3,4,b5,5,b7', | |
# Penatatonic scales | |
'pentatonic_major': '1,2,3,5,6', | |
'pentatonic_minor': '1,b3,4,5,b7', | |
'pentatonic_blues': '1,b3,4,b5,5,b7', | |
}, | |
'chords': { | |
# Major | |
'major': '1,3,5', | |
'major_6': '1,3,5,6', | |
'major_6_9': '1,3,5,6,9', | |
'major_7': '1,3,5,7', | |
'major_9': '1,3,5,7,9', | |
'major_13': '1,3,5,7,9,11,13', | |
'major_7_#11': '1,3,5,7,#11', | |
# Minor | |
'minor': '1,b3,5', | |
'minor_6': '1,b3,5,6', | |
'minor_6_9': '1,b3,5,6,9', | |
'minor_7': '1,b3,5,b7', | |
'minor_9': '1,b3,5,b7,9', | |
'minor_11': '1,b3,5,b7,9,11', | |
'minor_7_b5': '1,b3,b5,b7', | |
# Dominant | |
'dominant_7': '1,3,5,b7', | |
'dominant_9': '1,3,5,b7,9', | |
'dominant_11': '1,3,5,b7,9,11', | |
'dominant_13': '1,3,5,b7,9,11,13', | |
'dominant_7_#11': '1,3,5,b7,#11', | |
# Diminished | |
'diminished': '1,b3,b5', | |
'diminished_7': '1,b3,b5,bb7', | |
'diminished_7_half': '1,b3,b5,b7', | |
# Augmented | |
'augmented': '1,3,#5', | |
# Suspended | |
'sus2': '1,2,5', | |
'sus4': '1,4,5', | |
'7sus2': '1,2,5,b7', | |
'7sus4': '1,4,5,b7', | |
}, | |
} | |
def dump(scale, separator=' '): | |
''' | |
Pretty-print the notes of a scale. Replaces b and # characters | |
for unicode flat and sharp symbols. | |
''' | |
return separator.join(['{:<3s}'.format(x) for x in scale]) \ | |
.replace('b', '\u266d') \ | |
.replace('#', '\u266f') | |
intervs = make_intervals_major('C') | |
for key in formulas: | |
print(key) | |
for name, formula in formulas[key].items(): | |
v = make_formula(formula, intervs) | |
print('\t', name, ':', dump(v)) | |
major_mode_rotations = { | |
'Ionian': 0, | |
'Dorian': 1, | |
'Phrygian': 2, | |
'Lydian': 3, | |
'Mixolydian': 4, | |
'Aeolian': 5, | |
'Locrian': 6, | |
} | |
def mode(scale, degree): | |
return rotate(scale, degree) | |
intervs = make_intervals_major('C') | |
v = make_formula(formulas['scales']['major_I'], intervs) | |
print(dump(mode(v, major_mode_rotations['Phrygian']))) | |
print(find_note_index(notes, 'A')) | |
print(find_note_index(alphabet, 'A')) | |
def make_intervals(key, interval_type='standard'): | |
# Our labeled set of notes mapping interval names to notes | |
labels = {} | |
# Step 1: Generate a chromatic scale in our desired key | |
chromatic_scale = chromatic(key) | |
# The alphabets starting at provided key | |
alphabet_key = rotate(alphabet, find_note_index(alphabet, key[0])) | |
intervs = intervals if interval_type == 'standard' else intervals_major | |
# Iterate through all intervals (list of lists) | |
for index, interval_list in enumerate(intervs): | |
# Step 2: Find the notes to search through based on degree | |
notes_to_search = chromatic_scale[index % len(chromatic_scale)] | |
for interval_name in interval_list: | |
# Get the interval degree | |
if interval_type == 'standard': | |
degree = int(interval_name[1]) - 1 # e.g. M3 --> 2, m7 --> 6 | |
elif interval_type == 'major': | |
degree = int(re.sub('[b#]', '', interval_name)) - 1 | |
# Get the alphabet to look for | |
alphabet_to_search = alphabet_key[degree % len(alphabet_key)] | |
print('Interval {}, degree {}: looking for alphabet {} in notes {}'.format(interval_name, degree, alphabet_to_search, notes_to_search)) | |
try: | |
note = [x for x in notes_to_search if x[0] == alphabet_to_search][0] | |
except: | |
note = notes_to_search[0] | |
labels[interval_name] = note | |
return labels | |
intervs = make_intervals('B#', 'major') | |
pprint.pprint(make_intervals_standard('C'), sort_dicts=False) | |
formula = 'P1,M2,M3,P4,P5,M6,M7,P8' | |
for key in alphabet: | |
print(key, make_formula(formula, make_intervals_standard(key))) | |
for key in alphabet: | |
scale = make_formula(formula, make_intervals_standard(key)) | |
print('{}: {}'.format(key, dump(scale))) | |
intervs = make_intervals('C', 'major') | |
for ftype in formulas: | |
print(ftype) | |
for name, formula in formulas[ftype].items(): | |
v = make_formula(formula, intervs) | |
print('\t{}: {}'.format(name, dump(v))) | |
print('\n\n') | |
intervs = make_intervals('C', 'major') | |
c_major_scale = make_formula(formulas['scales']['major'], intervs) | |
for m in major_mode_rotations: | |
v = mode(c_major_scale, major_mode_rotations[m]) | |
print('{} {}: {}'.format(dump([v[0]]), m, dump(v))) | |
keys = [ | |
'B#', 'C', 'C#', 'Db', 'D', 'D#', 'Eb', 'E', 'Fb', 'E#', 'F', | |
'F#', 'Gb', 'G', 'G#', 'Ab', 'A', 'A#', 'Bb', 'B', 'Cb', | |
] | |
modes = {} | |
for key in keys: | |
print(key) | |
intervs = make_intervals(key, 'major') | |
c_major_scale = make_formula(formulas['scales']['major'], intervs) | |
for m in major_mode_rotations: | |
v = mode(c_major_scale, major_mode_rotations[m]) | |
if v[0] not in modes: | |
modes[v[0]] = {} | |
modes[v[0]][m] = v | |
pprint.pprint(modes['C']) |
Also you have to change
#print('Major :', ','.join(make_formula('1,2,3,4,5,6,7', intervs))) # Major
print('Major :', ','.join(make_formula('P1,M2,M3,P4,P5,M6,M7,P8', intervs))) # Major
I had to do this to get it to run...
#v = make_formula(formulas['scales']['major_I'], intervs)
v = make_formula(formulas['scales']['major'], intervs)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The
def make_intervals_standard()
doesn't exist in this code. You have to copy it from the blog article... https://www.mvanga.com/blog/basic-music-theory-in-200-lines-of-pythonor here...