-
-
Save mvgolom/d053ae55ef1f08bac30572a89e37ba3d to your computer and use it in GitHub Desktop.
a segnet-like architecture for building detection in the spacenet dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#from __future__ import absolute_import | |
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img | |
from keras.callbacks import ModelCheckpoint | |
from keras.models import Sequential | |
from keras.layers import Convolution2D, MaxPooling2D | |
from keras.layers import Layer, Dense, Dropout, Activation, Flatten, Reshape, Merge, Permute | |
from keras.layers import ZeroPadding2D, UpSampling2D | |
from keras.layers.normalization import BatchNormalization | |
import sys | |
import os | |
import numpy as np | |
import matplotlib | |
import matplotlib.pyplot as plt | |
#from preprocessing.visualize_prepro import shiftedColorMap | |
import itertools | |
import tensorflow as tf | |
path = sys.argv[1] | |
# input image dimensions | |
img_rows, img_cols = 400, 400 | |
# output image dimensions | |
label_rows, label_cols = 400, 400 | |
with tf.device('/gpu:1'): | |
# we create two instances with the same arguments | |
img_data_gen_args = dict( | |
# featurewise_center=True, | |
# featurewise_std_normalization=True, | |
rescale=1. / 255, | |
rotation_range=90., | |
width_shift_range=0.1, | |
height_shift_range=0.1, | |
zoom_range=0.2, | |
fill_mode="constant", | |
cval=0 | |
) | |
label_data_gen_args = dict( | |
rotation_range=90., | |
width_shift_range=0.1, | |
height_shift_range=0.1, | |
zoom_range=0.2, | |
fill_mode="constant", | |
cval=1 | |
) | |
image_datagen = ImageDataGenerator(**img_data_gen_args) | |
mask_datagen = ImageDataGenerator(**label_data_gen_args) | |
# Provide the same seed and keyword arguments to the fit and flow methods | |
seed = 1 | |
# image_datagen.fit(images, augment=True, seed=seed) | |
# mask_datagen.fit(masks, augment=True, seed=seed) | |
image_generator = image_datagen.flow_from_directory( | |
os.path.join(path, '3band/'), | |
target_size=(img_rows, img_cols), | |
class_mode=None, | |
batch_size=8, | |
shuffle=False, | |
seed=seed) | |
mask_generator = mask_datagen.flow_from_directory( | |
os.path.join(path, 'labels'), | |
target_size=(label_rows, label_cols), | |
class_mode=None, | |
batch_size=8, | |
shuffle=False, | |
color_mode='grayscale', | |
seed=seed) | |
# combine generators into one which yields image and masks | |
train_generator = itertools.izip(image_generator, mask_generator) | |
kernel = 3 | |
filter_size = 64 | |
pad = 1 | |
pool_size = 2 | |
model = Sequential() | |
model.add(Layer(input_shape=(img_rows, img_cols, 3))) | |
# encoding layers | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(filter_size, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(MaxPooling2D(pool_size=(pool_size, pool_size))) | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(128, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(pool_size, pool_size))) | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(256, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(pool_size, pool_size))) | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(512, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(Activation('relu')) | |
# decoding layers | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(512, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(UpSampling2D(size=(pool_size, pool_size))) | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(256, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(UpSampling2D(size=(pool_size, pool_size))) | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(128, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(UpSampling2D(size=(pool_size, pool_size))) | |
model.add(ZeroPadding2D(padding=(pad, pad))) | |
model.add(Convolution2D(filter_size, kernel, kernel, border_mode='valid')) | |
model.add(BatchNormalization()) | |
model.add(Convolution2D(1, 1, 1, border_mode='valid',)) | |
print model.output_shape | |
model.add(Reshape((label_rows * label_cols,))) | |
model.add(Activation('sigmoid')) | |
model.add(Reshape((label_rows, label_cols, 1))) | |
model.compile(loss="binary_crossentropy", optimizer='rmsprop', | |
metrics=['binary_accuracy']) | |
model.summary() | |
checkpointer = ModelCheckpoint(filepath="weights.hdf5", verbose=1, save_best_only=False) | |
model.fit_generator( | |
train_generator, | |
samples_per_epoch=1000, | |
nb_epoch=20, | |
callbacks=[checkpointer]) | |
model.save('spacenetmodel2.h5') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment