Created
July 3, 2019 05:20
-
-
Save mwilliammyers/ce9adca6b0f7d30f31f5bce59bcbfe44 to your computer and use it in GitHub Desktop.
TensorFlow eager execution demo of a simple regression model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import logging | |
import numpy as np | |
import tensorflow as tf | |
logging.getLogger().setLevel(logging.INFO) | |
train_data = np.load( | |
"/mnt/pccfs/not_backed_up/data/eve-embeddings-prod/ccc_train.npy") | |
train_features = train_data.item()["features"] | |
train_labels = train_data.item()["labels"] | |
test_data = np.load( | |
"/mnt/pccfs/not_backed_up/data/eve-embeddings-prod/ccc_evaluation.npy") | |
test_features = test_data.item()["features"] | |
test_labels = test_data.item()["labels"] | |
DIM = 512 | |
train_input_fn = tf.estimator.inputs.numpy_input_fn( | |
x={ | |
"previous_response": train_features[:, :DIM], | |
"text": train_features[:, DIM:] | |
}, | |
y=train_labels, | |
batch_size=2, | |
num_epochs=None, | |
shuffle=True) | |
test_input_fn = tf.estimator.inputs.numpy_input_fn( | |
x={ | |
"previous_response": test_features[:, :DIM], | |
"text": test_features[:, DIM:] | |
}, | |
y=test_labels, | |
num_epochs=None, | |
shuffle=True) | |
# samples = np.array([8., 9.]) | |
# predict_input_fn = tf.estimator.inputs.numpy_input_fn( | |
# x={"f1": samples}, num_epochs=1, shuffle=False) | |
model = tf.estimator.LinearRegressor( | |
feature_columns=[ | |
tf.feature_column.numeric_column("previous_response", shape=DIM), | |
tf.feature_column.numeric_column("text", shape=DIM), | |
], | |
label_dimension=DIM, | |
# optimizer=tf.train.AdamOptimizer(), | |
model_dir='./output') | |
# model.train(input_fn=train_input_fn, steps=50000) | |
eval_results = model.evaluate(input_fn=test_input_fn, steps=1000) | |
average_loss = eval_results["average_loss"] | |
print(f"Average loss in testing: {average_loss:.4f}") | |
# predictions = list(model.predict(input_fn=predict_input_fn)) | |
# | |
# for input, p in zip(samples, predictions): | |
# v = p["predictions"][0] | |
# print(f"{input} -> {v:.4f}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment