- Compares two numbers and swaps them if the 2nd > 1st
- Keeps repeating the process (up to length - 1 each iteration)
- Simple but not a practical solution due to its heavy performance
def bubble_sort(dataset):
# start with the array length and decrement each time
for i in range(len(dataset)-1, 0, -1):
for j in range(i):
if (dataset[j] > dataset[j+1]):
temp = dataset[j]
dataset[j] = dataset[j+1]
dataset[j+1] = temp
nums = [6, 20, 8, 19, 56, 23, 87, 41, 49, 53]
print('Before: ', nums)
bubble_sort(nums)
print('After: ', nums)
Before: [6, 20, 8, 19, 56, 23, 87, 41, 49, 53]
After: [6, 8, 19, 20, 23, 41, 49, 53, 56, 87]
- Divide and conquer as it breaks a dataset into peices.
- Merges/sorts the pieces into larger sets walking its way up (recursively) to the original dataset.
- Performs well on large sets of data.
[31, 12, 19, 6]
break ⬇️
[31, 12]
, [19, 6]
break ⬇️
[31]
, [12]
, [19]
, [6]
merge/sort ⬇️
[12, 31]
, [6, 19]
merge/sort ⬇️
[6, 12, 19, 31]
🎉
def mergesort(dataset):
if len(dataset) > 1:
mid = len(dataset) // 2
leftArr = dataset[:mid]
rightArr = dataset[mid:]
# recursively break down the arrays
mergesort(leftArr)
mergesort(rightArr)
# now perform the merging
leftIdx=0 # index into the left array
rightIdx=0 # index into the right array
dsIdx=0 # index into merged array (dataset)
# while both arrays have content
while leftIdx < len(leftArr) and rightIdx < len(rightArr):
if (leftArr[leftIdx] < rightArr[rightIdx]):
dataset[dsIdx] = leftArr[leftIdx]
leftIdx += 1
else:
dataset[dsIdx] = rightArr[rightIdx]
rightIdx += 1
dsIdx += 1
# if the left array still has values, add them
while (leftIdx < len(leftArr)):
dataset[dsIdx] = leftArr[leftIdx]
leftIdx += 1
dsIdx += 1
# if the right array still has values, add them
while (rightIdx < len(rightArr)):
dataset[dsIdx] = rightArr[rightIdx]
rightIdx += 1
dsIdx += 1
nums = [6, 20, 8, 19, 56, 23, 87, 41, 49, 53]
print('Before: ', nums)
mergesort(nums)
print('After: ', nums)
Before: [6, 20, 8, 19, 56, 23, 87, 41, 49, 53]
After: [6, 8, 19, 20, 23, 41, 49, 53, 56, 87]
- Like Merge Sort, Quick Sort also uses divide and conquer to break a dataset into peices then merges the pieces recursively into one sorted set.
- Not ideal for datasets that are already sorted.
[20, 6, 8, 53, 23, 87, 42, 19]
-
Pick the following points
pivot point (pp)
: 20lowest idx (li)
: 1 (6)highest idx (hi)
: 7 (19)
CONDITION:
lowest idx
<highest idx
-
On left side, increment
li
until we reach a value >pp
then we stop (at index 3 [20, 6, 8, 53, 23, 87, 42, 19]) -
On right side, decrement
hi
until we reach a value <pp
then stop (at index 7: [20, 6, 8, 53, 23, 87, 42, 19]) -
Once both
li
andhi
have reached a stop, their values are swapped (move 53 to index 7, and 19 to index 3)- Before [20, 6, 8, 53, 23, 87, 42, 19]
- After [20, 6, 8, 19, 23, 87, 42, 53]
-
li
keeps incrementing until it stops at index 4 because its value >pp
[20, 6, 8, 19, 23, 87, 42, 53] -
hi
keeps decrementing until it stops at index 3 because:- The value at index 3 <
pp
and hi
has crossedli
[20, 6, 8, 19hi
, 23li
, 87, 42, 53] which means the split point has been identified.
- The value at index 3 <
-
At this point:
pp
andhi
are swapped [19, 6, 8, 20, 23, 87, 42, 53]- The array is split on
pp
into two:[19,6,8]
and[23, 87, 42, 53]
- Quick sort is recursively applied to each until each array ends up having one item (no longer splittable)
def quickSort(dataset, firstIdx, lastIdx):
if firstIdx < lastIdx:
# calculate the split point
pivotIdx = partition(dataset, firstIdx, lastIdx)
# now sort the two partitions
quickSort(dataset, firstIdx, pivotIdx-1)
quickSort(dataset, pivotIdx+1, lastIdx)
def partition(datavalues, firstIdx, lastIdx):
# choose the first item as the pivot value
pivotvalue = datavalues[firstIdx]
# establish the upper and lower indexes
lowerIdx = firstIdx + 1
upperIdx = lastIdx
# start searching for the crossing point
done = False
while not done:
# advance the lower index
while lowerIdx <= upperIdx and datavalues[lowerIdx] <= pivotvalue:
lowerIdx += 1
# advance the upper index
while datavalues[upperIdx] >= pivotvalue and upperIdx >= lowerIdx:
upperIdx -= 1
# if the two indexes cross, we have found the split point
if upperIdx < lowerIdx:
done = True
else:
# exchange the two values
temp = datavalues[lowerIdx]
datavalues[lowerIdx] = datavalues[upperIdx]
datavalues[upperIdx] = temp
# when the split point is found, exchange the pivot value
temp = datavalues[firstIdx]
datavalues[firstIdx] = datavalues[upperIdx]
datavalues[upperIdx] = temp
# return the split point index
return upperIdx
items = [20, 6, 8, 53, 56, 23, 87, 41, 49, 19]
print('Before: ', items)
quickSort(items, 0, len(items)-1)
print('After: ', items)
Before: [20, 6, 8, 53, 56, 23, 87, 41, 49, 19]
After: [6, 8, 19, 20, 23, 41, 49, 53, 56, 87]
- Start with determining: lowest & highest indexes, and the mid point
- If mid-point === search-item return it
- Otherwise pick the half where the midpoint > search-item and repeat
def binary_search(item, arr):
lowestIdx = 0
highestIdx = len(arr) - 1
while lowestIdx <= highestIdx:
midPt = (lowestIdx + highestIdx) // 2
if arr[midPt] == item:
return midPt
if item > arr[midPt]:
lowestIdx = midPt + 1
else:
highestIdx = midPt - 1
if lowestIdx > highestIdx:
return None
items = [6, 8, 19, 20, 23, 41, 49, 53, 56, 87]
print('items: ', items)
print(binary_search(23, items))
print(binary_search(87, items))
print(binary_search(250, items))
items: [6, 8, 19, 20, 23, 41, 49, 53, 56, 87]
4
9
None