Created
June 19, 2019 00:06
-
-
Save mwvent/520304a5130a1d5ed7c48ab15bb30286 to your computer and use it in GitHub Desktop.
My mod of RCSwitch.cpp from the RCSwitch Arduino Lib to spit out my doorbell and other random stuff as protocol 7
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
RCSwitch - Arduino libary for remote control outlet switches | |
Copyright (c) 2011 Suat Özgür. All right reserved. | |
Contributors: | |
- Andre Koehler / info(at)tomate-online(dot)de | |
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com | |
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46 | |
- Dominik Fischer / dom_fischer(at)web(dot)de | |
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com | |
- Andreas Steinel / A.<lastname>(at)gmail(dot)com | |
- Max Horn / max(at)quendi(dot)de | |
- Robert ter Vehn / <first name>.<last name>(at)gmail(dot)com | |
- Johann Richard / <first name>.<last name>(at)gmail(dot)com | |
- Vlad Gheorghe / <first name>.<last name>(at)gmail(dot)com https://github.com/vgheo | |
Project home: https://github.com/sui77/rc-switch/ | |
This library is free software; you can redistribute it and/or | |
modify it under the terms of the GNU Lesser General Public | |
License as published by the Free Software Foundation; either | |
version 2.1 of the License, or (at your option) any later version. | |
This library is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
Lesser General Public License for more details. | |
You should have received a copy of the GNU Lesser General Public | |
License along with this library; if not, write to the Free Software | |
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
#include "RCSwitch.h" | |
#ifdef RaspberryPi | |
// PROGMEM and _P functions are for AVR based microprocessors, | |
// so we must normalize these for the ARM processor: | |
#define PROGMEM | |
#define memcpy_P(dest, src, num) memcpy((dest), (src), (num)) | |
#endif | |
#ifdef ESP8266 | |
// interrupt handler and related code must be in RAM on ESP8266, | |
// according to issue #46. | |
#define RECEIVE_ATTR ICACHE_RAM_ATTR | |
#else | |
#define RECEIVE_ATTR | |
#endif | |
/* Format for protocol definitions: | |
* {pulselength, Sync bit, "0" bit, "1" bit} | |
* | |
* pulselength: pulse length in microseconds, e.g. 350 | |
* Sync bit: {1, 31} means 1 high pulse and 31 low pulses | |
* (perceived as a 31*pulselength long pulse, total length of sync bit is | |
* 32*pulselength microseconds), i.e: | |
* _ | |
* | |_______________________________ (don't count the vertical bars) | |
* "0" bit: waveform for a data bit of value "0", {1, 3} means 1 high pulse | |
* and 3 low pulses, total length (1+3)*pulselength, i.e: | |
* _ | |
* | |___ | |
* "1" bit: waveform for a data bit of value "1", e.g. {3,1}: | |
* ___ | |
* | |_ | |
* | |
* These are combined to form Tri-State bits when sending or receiving codes. | |
*/ | |
#ifdef ESP8266 | |
static const RCSwitch::Protocol proto[] = { | |
#else | |
static const RCSwitch::Protocol PROGMEM proto[] = { | |
#endif | |
{ 350, { 1, 31 }, { 1, 3 }, { 3, 1 }, false }, // protocol 1 | |
{ 650, { 1, 10 }, { 1, 2 }, { 2, 1 }, false }, // protocol 2 | |
{ 100, { 30, 71 }, { 4, 11 }, { 9, 6 }, false }, // protocol 3 | |
{ 380, { 1, 6 }, { 1, 3 }, { 3, 1 }, false }, // protocol 4 | |
{ 500, { 6, 14 }, { 1, 2 }, { 2, 1 }, false }, // protocol 5 | |
{ 450, { 23, 1 }, { 1, 2 }, { 2, 1 }, true }, // protocol 6 (HT6P20B) | |
{ 1039, { 9, 4 }, { 1, 1 }, { 1, 3 }, true } // protocol 7 (VGJOT Doorbell) | |
}; | |
enum { | |
numProto = sizeof(proto) / sizeof(proto[0]) | |
}; | |
#if not defined( RCSwitchDisableReceiving ) | |
unsigned long RCSwitch::nReceivedValue = 0; | |
unsigned int RCSwitch::nReceivedBitlength = 0; | |
unsigned int RCSwitch::nReceivedDelay = 0; | |
unsigned int RCSwitch::nReceivedProtocol = 0; | |
int RCSwitch::nReceiveTolerance = 60; | |
const unsigned int RCSwitch::nSeparationLimit = 4300; | |
// separationLimit: minimum microseconds between received codes, closer codes are ignored. | |
// according to discussion on issue #14 it might be more suitable to set the separation | |
// limit to the same time as the 'low' part of the sync signal for the current protocol. | |
unsigned int RCSwitch::timings[RCSWITCH_MAX_CHANGES]; | |
#endif | |
RCSwitch::RCSwitch() { | |
this->nTransmitterPin = -1; | |
this->setRepeatTransmit(10); | |
this->setProtocol(1); | |
#if not defined( RCSwitchDisableReceiving ) | |
this->nReceiverInterrupt = -1; | |
this->setReceiveTolerance(60); | |
RCSwitch::nReceivedValue = 0; | |
#endif | |
} | |
/** | |
* Sets the protocol to send. | |
*/ | |
void RCSwitch::setProtocol(Protocol protocol) { | |
this->protocol = protocol; | |
} | |
/** | |
* Sets the protocol to send, from a list of predefined protocols | |
*/ | |
void RCSwitch::setProtocol(int nProtocol) { | |
if (nProtocol < 1 || nProtocol > numProto) { | |
nProtocol = 1; // TODO: trigger an error, e.g. "bad protocol" ??? | |
} | |
#ifdef ESP8266 | |
this->protocol = proto[nProtocol-1]; | |
#else | |
memcpy_P(&this->protocol, &proto[nProtocol-1], sizeof(Protocol)); | |
#endif | |
} | |
/** | |
* Sets the protocol to send with pulse length in microseconds. | |
*/ | |
void RCSwitch::setProtocol(int nProtocol, int nPulseLength) { | |
setProtocol(nProtocol); | |
this->setPulseLength(nPulseLength); | |
} | |
/** | |
* Sets pulse length in microseconds | |
*/ | |
void RCSwitch::setPulseLength(int nPulseLength) { | |
this->protocol.pulseLength = nPulseLength; | |
} | |
/** | |
* Sets Repeat Transmits | |
*/ | |
void RCSwitch::setRepeatTransmit(int nRepeatTransmit) { | |
this->nRepeatTransmit = nRepeatTransmit; | |
} | |
/** | |
* Set Receiving Tolerance | |
*/ | |
#if not defined( RCSwitchDisableReceiving ) | |
void RCSwitch::setReceiveTolerance(int nPercent) { | |
RCSwitch::nReceiveTolerance = nPercent; | |
} | |
#endif | |
/** | |
* Enable transmissions | |
* | |
* @param nTransmitterPin Arduino Pin to which the sender is connected to | |
*/ | |
void RCSwitch::enableTransmit(int nTransmitterPin) { | |
this->nTransmitterPin = nTransmitterPin; | |
pinMode(this->nTransmitterPin, OUTPUT); | |
} | |
/** | |
* Disable transmissions | |
*/ | |
void RCSwitch::disableTransmit() { | |
this->nTransmitterPin = -1; | |
} | |
/** | |
* Switch a remote switch on (Type D REV) | |
* | |
* @param sGroup Code of the switch group (A,B,C,D) | |
* @param nDevice Number of the switch itself (1..3) | |
*/ | |
void RCSwitch::switchOn(char sGroup, int nDevice) { | |
this->sendTriState( this->getCodeWordD(sGroup, nDevice, true) ); | |
} | |
/** | |
* Switch a remote switch off (Type D REV) | |
* | |
* @param sGroup Code of the switch group (A,B,C,D) | |
* @param nDevice Number of the switch itself (1..3) | |
*/ | |
void RCSwitch::switchOff(char sGroup, int nDevice) { | |
this->sendTriState( this->getCodeWordD(sGroup, nDevice, false) ); | |
} | |
/** | |
* Switch a remote switch on (Type C Intertechno) | |
* | |
* @param sFamily Familycode (a..f) | |
* @param nGroup Number of group (1..4) | |
* @param nDevice Number of device (1..4) | |
*/ | |
void RCSwitch::switchOn(char sFamily, int nGroup, int nDevice) { | |
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, true) ); | |
} | |
/** | |
* Switch a remote switch off (Type C Intertechno) | |
* | |
* @param sFamily Familycode (a..f) | |
* @param nGroup Number of group (1..4) | |
* @param nDevice Number of device (1..4) | |
*/ | |
void RCSwitch::switchOff(char sFamily, int nGroup, int nDevice) { | |
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, false) ); | |
} | |
/** | |
* Switch a remote switch on (Type B with two rotary/sliding switches) | |
* | |
* @param nAddressCode Number of the switch group (1..4) | |
* @param nChannelCode Number of the switch itself (1..4) | |
*/ | |
void RCSwitch::switchOn(int nAddressCode, int nChannelCode) { | |
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, true) ); | |
} | |
/** | |
* Switch a remote switch off (Type B with two rotary/sliding switches) | |
* | |
* @param nAddressCode Number of the switch group (1..4) | |
* @param nChannelCode Number of the switch itself (1..4) | |
*/ | |
void RCSwitch::switchOff(int nAddressCode, int nChannelCode) { | |
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, false) ); | |
} | |
/** | |
* Deprecated, use switchOn(const char* sGroup, const char* sDevice) instead! | |
* Switch a remote switch on (Type A with 10 pole DIP switches) | |
* | |
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") | |
* @param nChannelCode Number of the switch itself (1..5) | |
*/ | |
void RCSwitch::switchOn(const char* sGroup, int nChannel) { | |
const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" }; | |
this->switchOn(sGroup, code[nChannel]); | |
} | |
/** | |
* Deprecated, use switchOff(const char* sGroup, const char* sDevice) instead! | |
* Switch a remote switch off (Type A with 10 pole DIP switches) | |
* | |
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") | |
* @param nChannelCode Number of the switch itself (1..5) | |
*/ | |
void RCSwitch::switchOff(const char* sGroup, int nChannel) { | |
const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" }; | |
this->switchOff(sGroup, code[nChannel]); | |
} | |
/** | |
* Switch a remote switch on (Type A with 10 pole DIP switches) | |
* | |
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") | |
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111") | |
*/ | |
void RCSwitch::switchOn(const char* sGroup, const char* sDevice) { | |
this->sendTriState( this->getCodeWordA(sGroup, sDevice, true) ); | |
} | |
/** | |
* Switch a remote switch off (Type A with 10 pole DIP switches) | |
* | |
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") | |
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111") | |
*/ | |
void RCSwitch::switchOff(const char* sGroup, const char* sDevice) { | |
this->sendTriState( this->getCodeWordA(sGroup, sDevice, false) ); | |
} | |
/** | |
* Returns a char[13], representing the code word to be send. | |
* | |
*/ | |
char* RCSwitch::getCodeWordA(const char* sGroup, const char* sDevice, bool bStatus) { | |
static char sReturn[13]; | |
int nReturnPos = 0; | |
for (int i = 0; i < 5; i++) { | |
sReturn[nReturnPos++] = (sGroup[i] == '0') ? 'F' : '0'; | |
} | |
for (int i = 0; i < 5; i++) { | |
sReturn[nReturnPos++] = (sDevice[i] == '0') ? 'F' : '0'; | |
} | |
sReturn[nReturnPos++] = bStatus ? '0' : 'F'; | |
sReturn[nReturnPos++] = bStatus ? 'F' : '0'; | |
sReturn[nReturnPos] = '\0'; | |
return sReturn; | |
} | |
/** | |
* Encoding for type B switches with two rotary/sliding switches. | |
* | |
* The code word is a tristate word and with following bit pattern: | |
* | |
* +-----------------------------+-----------------------------+----------+------------+ | |
* | 4 bits address | 4 bits address | 3 bits | 1 bit | | |
* | switch group | switch number | not used | on / off | | |
* | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | FFF | on=F off=0 | | |
* +-----------------------------+-----------------------------+----------+------------+ | |
* | |
* @param nAddressCode Number of the switch group (1..4) | |
* @param nChannelCode Number of the switch itself (1..4) | |
* @param bStatus Whether to switch on (true) or off (false) | |
* | |
* @return char[13], representing a tristate code word of length 12 | |
*/ | |
char* RCSwitch::getCodeWordB(int nAddressCode, int nChannelCode, bool bStatus) { | |
static char sReturn[13]; | |
int nReturnPos = 0; | |
if (nAddressCode < 1 || nAddressCode > 4 || nChannelCode < 1 || nChannelCode > 4) { | |
return 0; | |
} | |
for (int i = 1; i <= 4; i++) { | |
sReturn[nReturnPos++] = (nAddressCode == i) ? '0' : 'F'; | |
} | |
for (int i = 1; i <= 4; i++) { | |
sReturn[nReturnPos++] = (nChannelCode == i) ? '0' : 'F'; | |
} | |
sReturn[nReturnPos++] = 'F'; | |
sReturn[nReturnPos++] = 'F'; | |
sReturn[nReturnPos++] = 'F'; | |
sReturn[nReturnPos++] = bStatus ? 'F' : '0'; | |
sReturn[nReturnPos] = '\0'; | |
return sReturn; | |
} | |
/** | |
* Like getCodeWord (Type C = Intertechno) | |
*/ | |
char* RCSwitch::getCodeWordC(char sFamily, int nGroup, int nDevice, bool bStatus) { | |
static char sReturn[13]; | |
int nReturnPos = 0; | |
int nFamily = (int)sFamily - 'a'; | |
if ( nFamily < 0 || nFamily > 15 || nGroup < 1 || nGroup > 4 || nDevice < 1 || nDevice > 4) { | |
return 0; | |
} | |
// encode the family into four bits | |
sReturn[nReturnPos++] = (nFamily & 1) ? 'F' : '0'; | |
sReturn[nReturnPos++] = (nFamily & 2) ? 'F' : '0'; | |
sReturn[nReturnPos++] = (nFamily & 4) ? 'F' : '0'; | |
sReturn[nReturnPos++] = (nFamily & 8) ? 'F' : '0'; | |
// encode the device and group | |
sReturn[nReturnPos++] = ((nDevice-1) & 1) ? 'F' : '0'; | |
sReturn[nReturnPos++] = ((nDevice-1) & 2) ? 'F' : '0'; | |
sReturn[nReturnPos++] = ((nGroup-1) & 1) ? 'F' : '0'; | |
sReturn[nReturnPos++] = ((nGroup-1) & 2) ? 'F' : '0'; | |
// encode the status code | |
sReturn[nReturnPos++] = '0'; | |
sReturn[nReturnPos++] = 'F'; | |
sReturn[nReturnPos++] = 'F'; | |
sReturn[nReturnPos++] = bStatus ? 'F' : '0'; | |
sReturn[nReturnPos] = '\0'; | |
return sReturn; | |
} | |
/** | |
* Encoding for the REV Switch Type | |
* | |
* The code word is a tristate word and with following bit pattern: | |
* | |
* +-----------------------------+-------------------+----------+--------------+ | |
* | 4 bits address | 3 bits address | 3 bits | 2 bits | | |
* | switch group | device number | not used | on / off | | |
* | A=1FFF B=F1FF C=FF1F D=FFF1 | 1=0FF 2=F0F 3=FF0 | 000 | on=10 off=01 | | |
* +-----------------------------+-------------------+----------+--------------+ | |
* | |
* Source: http://www.the-intruder.net/funksteckdosen-von-rev-uber-arduino-ansteuern/ | |
* | |
* @param sGroup Name of the switch group (A..D, resp. a..d) | |
* @param nDevice Number of the switch itself (1..3) | |
* @param bStatus Whether to switch on (true) or off (false) | |
* | |
* @return char[13], representing a tristate code word of length 12 | |
*/ | |
char* RCSwitch::getCodeWordD(char sGroup, int nDevice, bool bStatus) { | |
static char sReturn[13]; | |
int nReturnPos = 0; | |
// sGroup must be one of the letters in "abcdABCD" | |
int nGroup = (sGroup >= 'a') ? (int)sGroup - 'a' : (int)sGroup - 'A'; | |
if ( nGroup < 0 || nGroup > 3 || nDevice < 1 || nDevice > 3) { | |
return 0; | |
} | |
for (int i = 0; i < 4; i++) { | |
sReturn[nReturnPos++] = (nGroup == i) ? '1' : 'F'; | |
} | |
for (int i = 1; i <= 3; i++) { | |
sReturn[nReturnPos++] = (nDevice == i) ? '1' : 'F'; | |
} | |
sReturn[nReturnPos++] = '0'; | |
sReturn[nReturnPos++] = '0'; | |
sReturn[nReturnPos++] = '0'; | |
sReturn[nReturnPos++] = bStatus ? '1' : '0'; | |
sReturn[nReturnPos++] = bStatus ? '0' : '1'; | |
sReturn[nReturnPos] = '\0'; | |
return sReturn; | |
} | |
/** | |
* @param sCodeWord a tristate code word consisting of the letter 0, 1, F | |
*/ | |
void RCSwitch::sendTriState(const char* sCodeWord) { | |
// turn the tristate code word into the corresponding bit pattern, then send it | |
unsigned long code = 0; | |
unsigned int length = 0; | |
for (const char* p = sCodeWord; *p; p++) { | |
code <<= 2L; | |
switch (*p) { | |
case '0': | |
// bit pattern 00 | |
break; | |
case 'F': | |
// bit pattern 01 | |
code |= 1L; | |
break; | |
case '1': | |
// bit pattern 11 | |
code |= 3L; | |
break; | |
} | |
length += 2; | |
} | |
this->send(code, length); | |
} | |
/** | |
* @param sCodeWord a binary code word consisting of the letter 0, 1 | |
*/ | |
void RCSwitch::send(const char* sCodeWord) { | |
// turn the tristate code word into the corresponding bit pattern, then send it | |
unsigned long code = 0; | |
unsigned int length = 0; | |
for (const char* p = sCodeWord; *p; p++) { | |
code <<= 1L; | |
if (*p != '0') | |
code |= 1L; | |
length++; | |
} | |
this->send(code, length); | |
} | |
/** | |
* Transmit the first 'length' bits of the integer 'code'. The | |
* bits are sent from MSB to LSB, i.e., first the bit at position length-1, | |
* then the bit at position length-2, and so on, till finally the bit at position 0. | |
*/ | |
void RCSwitch::send(unsigned long code, unsigned int length) { | |
if (this->nTransmitterPin == -1) | |
return; | |
#if not defined( RCSwitchDisableReceiving ) | |
// make sure the receiver is disabled while we transmit | |
int nReceiverInterrupt_backup = nReceiverInterrupt; | |
if (nReceiverInterrupt_backup != -1) { | |
this->disableReceive(); | |
} | |
#endif | |
for (int nRepeat = 0; nRepeat < nRepeatTransmit; nRepeat++) { | |
for (int i = length-1; i >= 0; i--) { | |
if (code & (1L << i)) | |
this->transmit(protocol.one); | |
else | |
this->transmit(protocol.zero); | |
} | |
this->transmit(protocol.syncFactor); | |
} | |
#if not defined( RCSwitchDisableReceiving ) | |
// enable receiver again if we just disabled it | |
if (nReceiverInterrupt_backup != -1) { | |
this->enableReceive(nReceiverInterrupt_backup); | |
} | |
#endif | |
} | |
/** | |
* Transmit a single high-low pulse. | |
*/ | |
void RCSwitch::transmit(HighLow pulses) { | |
uint8_t firstLogicLevel = (this->protocol.invertedSignal) ? LOW : HIGH; | |
uint8_t secondLogicLevel = (this->protocol.invertedSignal) ? HIGH : LOW; | |
digitalWrite(this->nTransmitterPin, firstLogicLevel); | |
delayMicroseconds( this->protocol.pulseLength * pulses.high); | |
digitalWrite(this->nTransmitterPin, secondLogicLevel); | |
delayMicroseconds( this->protocol.pulseLength * pulses.low); | |
} | |
#if not defined( RCSwitchDisableReceiving ) | |
/** | |
* Enable receiving data | |
*/ | |
void RCSwitch::enableReceive(int interrupt) { | |
this->nReceiverInterrupt = interrupt; | |
this->enableReceive(); | |
} | |
void RCSwitch::enableReceive() { | |
if (this->nReceiverInterrupt != -1) { | |
RCSwitch::nReceivedValue = 0; | |
RCSwitch::nReceivedBitlength = 0; | |
#if defined(RaspberryPi) // Raspberry Pi | |
wiringPiISR(this->nReceiverInterrupt, INT_EDGE_BOTH, &handleInterrupt); | |
#else // Arduino | |
attachInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE); | |
#endif | |
} | |
} | |
/** | |
* Disable receiving data | |
*/ | |
void RCSwitch::disableReceive() { | |
#if not defined(RaspberryPi) // Arduino | |
detachInterrupt(this->nReceiverInterrupt); | |
#endif // For Raspberry Pi (wiringPi) you can't unregister the ISR | |
this->nReceiverInterrupt = -1; | |
} | |
bool RCSwitch::available() { | |
return RCSwitch::nReceivedValue != 0; | |
} | |
void RCSwitch::resetAvailable() { | |
RCSwitch::nReceivedValue = 0; | |
} | |
unsigned long RCSwitch::getReceivedValue() { | |
return RCSwitch::nReceivedValue; | |
} | |
unsigned int RCSwitch::getReceivedBitlength() { | |
return RCSwitch::nReceivedBitlength; | |
} | |
unsigned int RCSwitch::getReceivedDelay() { | |
return RCSwitch::nReceivedDelay; | |
} | |
unsigned int RCSwitch::getReceivedProtocol() { | |
return RCSwitch::nReceivedProtocol; | |
} | |
unsigned int* RCSwitch::getReceivedRawdata() { | |
return RCSwitch::timings; | |
} | |
/* helper function for the receiveProtocol method */ | |
static inline unsigned int diff(int A, int B) { | |
return abs(A - B); | |
} | |
/** | |
* | |
*/ | |
bool RECEIVE_ATTR RCSwitch::receiveProtocol(const int p, unsigned int changeCount) { | |
#ifdef ESP8266 | |
const Protocol &pro = proto[p-1]; | |
#else | |
Protocol pro; | |
memcpy_P(&pro, &proto[p-1], sizeof(Protocol)); | |
#endif | |
unsigned long code = 0; | |
//Assuming the longer pulse length is the pulse captured in timings[0] | |
const unsigned int syncLengthInPulses = ((pro.syncFactor.low) > (pro.syncFactor.high)) ? (pro.syncFactor.low) : (pro.syncFactor.high); | |
const unsigned int delay = RCSwitch::timings[0] / syncLengthInPulses; | |
const unsigned int delayTolerance = delay * RCSwitch::nReceiveTolerance / 100; | |
/* For protocols that start low, the sync period looks like | |
* _________ | |
* _____________| |XXXXXXXXXXXX| | |
* | |
* |--1st dur--|-2nd dur-|-Start data-| | |
* | |
* The 3rd saved duration starts the data. | |
* | |
* For protocols that start high, the sync period looks like | |
* | |
* ______________ | |
* | |____________|XXXXXXXXXXXXX| | |
* | |
* |-filtered out-|--1st dur--|--Start data--| | |
* | |
* The 2nd saved duration starts the data | |
*/ | |
const unsigned int firstDataTiming = (pro.invertedSignal) ? (2) : (1); | |
for (unsigned int i = firstDataTiming; i < changeCount - 1; i += 2) { | |
code <<= 1; | |
if (diff(RCSwitch::timings[i], delay * pro.zero.high) < delayTolerance && | |
diff(RCSwitch::timings[i + 1], delay * pro.zero.low) < delayTolerance) { | |
// zero | |
} else if (diff(RCSwitch::timings[i], delay * pro.one.high) < delayTolerance && | |
diff(RCSwitch::timings[i + 1], delay * pro.one.low) < delayTolerance) { | |
// one | |
code |= 1; | |
} else { | |
// Failed | |
if( p == 7 ) { | |
// zero ?? | |
} else { | |
return false; | |
} | |
//code |= 1; | |
} | |
} | |
if (changeCount > 7) { // ignore very short transmissions: no device sends them, so this must be noise | |
RCSwitch::nReceivedValue = code; | |
RCSwitch::nReceivedBitlength = (changeCount - 1) / 2; | |
RCSwitch::nReceivedDelay = delay; | |
RCSwitch::nReceivedProtocol = p; | |
return true; | |
} | |
return false; | |
} | |
void RECEIVE_ATTR RCSwitch::handleInterrupt() { | |
static unsigned int changeCount = 0; | |
static unsigned long lastTime = 0; | |
static unsigned int repeatCount = 0; | |
const long time = micros(); | |
const unsigned int duration = time - lastTime; | |
if (duration > RCSwitch::nSeparationLimit) { | |
// A long stretch without signal level change occurred. This could | |
// be the gap between two transmission. | |
if (diff(duration, RCSwitch::timings[0]) < 200) { | |
// This long signal is close in length to the long signal which | |
// started the previously recorded timings; this suggests that | |
// it may indeed by a a gap between two transmissions (we assume | |
// here that a sender will send the signal multiple times, | |
// with roughly the same gap between them). | |
repeatCount++; | |
if (repeatCount == 2) { | |
for(unsigned int i = 1; i <= numProto; i++) { | |
if (receiveProtocol(i, changeCount)) { | |
// receive succeeded for protocol i | |
break; | |
} | |
} | |
repeatCount = 0; | |
} | |
} | |
changeCount = 0; | |
} | |
// detect overflow | |
if (changeCount >= RCSWITCH_MAX_CHANGES) { | |
changeCount = 0; | |
repeatCount = 0; | |
} | |
RCSwitch::timings[changeCount++] = duration; | |
lastTime = time; | |
} | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment