Created
March 22, 2018 17:35
-
-
Save mxposed/3e0f249dfe27f00ccfd8426a5f88c470 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(Seurat) | |
require(scmap) | |
require(DropletUtils) | |
require(SeuratConverter) | |
initLung <- function() { | |
cache <- '../dataset 1/SC01+02.Robj' | |
if (!file.exists(cache)) { | |
sc01.data <- Read10X(data.dir = "../dataset 1/SC01/") | |
sc01 <- CreateSeuratObject(raw.data = sc01.data, min.cells = 3, min.genes = 200, project = "SC01") | |
[email protected] <- paste("SC01", [email protected], sep = "_") | |
colnames(x = [email protected]) <- paste("SC01", colnames(x = [email protected]), sep = "_") | |
rownames(x = [email protected]) <- paste("SC01", rownames(x = [email protected]), sep = "_") | |
sc02.data <- Read10X(data.dir = "../dataset 1/SC02/") | |
lung <- AddSamples(object = sc01, new.data = sc02.data, add.cell.id = "SC02") | |
mito.genes <- grep(pattern = "^mt-", x = rownames(x = lung@data), value = TRUE) | |
percent.mito <- Matrix::colSums([email protected][mito.genes, ])/Matrix::colSums([email protected]) | |
lung <- AddMetaData(object = lung, metadata = percent.mito, col.name = "percent.mito") | |
lung <- FilterCells(object = lung, subset.names = c("nGene", "percent.mito"), | |
low.thresholds = c(300, -Inf), high.thresholds = c(4000, 0.1)) | |
lung <- NormalizeData(object = lung, normalization.method = "LogNormalize", scale.factor = 10000) | |
lung <- ScaleData(object = lung, vars.to.regress = c("nUMI", "percent.mito")) | |
lung <- FindVariableGenes(object = lung, mean.function = ExpMean, dispersion.function = LogVMR, | |
x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5) | |
lung <- RunPCA(object = lung, pc.genes = [email protected], do.print = TRUE, pcs.print = 1:5, | |
genes.print = 5, pcs.compute = 40) | |
lung <- ProjectPCA(object = lung, do.print = FALSE) | |
lung <- FindClusters(object = lung, reduction.type = "pca", dims.use = 1:35, | |
resolution = 0.5, print.output = 0, save.SNN = TRUE, force.recalc = T) | |
lung <- RunTSNE(object = lung, dims.use = 1:35, do.fast = TRUE, check_duplicates = FALSE) | |
save(lung, file=cache) | |
} else { | |
load(cache) | |
} | |
return(lung) | |
} | |
initSC03 <- function() { | |
cache <- '../dataset 1/sc03.Robj' | |
if (!file.exists(cache)) { | |
sc03.data <- Read10X(data.dir = "../dataset 1/SC03/") | |
sc03.seurat <- CreateSeuratObject(raw.data = sc03.data, min.cells = 3, min.genes = 200, project = "SC03") | |
sc03.mito.genes <- grep(pattern = "^mt-", x = rownames(x = sc03.seurat@data), value = TRUE) | |
sc03.percent.mito <- Matrix::colSums([email protected][sc03.mito.genes, ])/Matrix::colSums([email protected]) | |
sc03.seurat <- AddMetaData(object = sc03.seurat, metadata = sc03.percent.mito, col.name = "percent.mito") | |
sc03.seurat <- FilterCells(object = sc03.seurat, subset.names = c("nGene", "percent.mito"), | |
low.thresholds = c(300, -Inf), high.thresholds = c(4000, 0.1)) | |
sc03.seurat <- NormalizeData(object = sc03.seurat, normalization.method = "LogNormalize", scale.factor = 10000) | |
sc03.seurat <- ScaleData(object = sc03.seurat, vars.to.regress = c("nUMI", "percent.mito")) | |
sc03.seurat <- FindVariableGenes(object = sc03.seurat, mean.function = ExpMean, dispersion.function = LogVMR, | |
x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5) | |
sc03.seurat <- RunPCA(object = sc03.seurat, pc.genes = [email protected], do.print = TRUE, pcs.print = 1:5, | |
genes.print = 5, pcs.compute = 40) | |
sc03.seurat <- ProjectPCA(object = sc03.seurat, do.print = FALSE) | |
sc03.seurat <- FindClusters(object = sc03.seurat, reduction.type = "pca", dims.use = 1:21, | |
resolution = 0.5, print.output = 0, save.SNN = TRUE, force.recalc = T) | |
sc03.seurat <- RunTSNE(object = sc03.seurat, dims.use = 1:21, do.fast = TRUE, check_duplicates = FALSE) | |
save(sc03.seurat, file=cache) | |
} else { | |
load(cache) | |
} | |
return(sc03.seurat) | |
} | |
initSC01 <- function(lung) { | |
cache <- '../dataset 1/sc01-sce.Robj' | |
if (!file.exists(cache)) { | |
sc01 <- as(SubsetData(lung, [email protected][[email protected]$orig.ident=="SC01"]), "SingleCellExperiment") | |
counts(sc01) <- as.matrix(assay(sc01, "raw.data")) | |
logcounts(sc01) <- log2(counts(sc01) + 1) | |
rowData(sc01)$feature_symbol <- rownames(sc01) | |
colData(sc01)$cell_type1 <- lung@ident[[email protected]$orig.ident == "SC01"] | |
sc01 <- selectFeatures(sc01) | |
sc01 <- indexCluster(sc01) | |
sc01 <- indexCell(sc01) | |
saveRDS(sc01, file=cache) | |
return(sc01) | |
} else { | |
return(readRDS(cache)) | |
} | |
} | |
initSC03sce <- function(sc03.seurat) { | |
cache <- '../dataset 1/sc03-sce.Robj' | |
if (!file.exists(cache)) { | |
sc03 <- as(sc03.seurat, "SingleCellExperiment") | |
counts(sc03) <- as.matrix(assay(sc03, "raw.data")) | |
logcounts(sc03) <- log2(counts(sc03) + 1) | |
rowData(sc03)$feature_symbol <- rownames(sc03) | |
colData(sc03)$cell_type1 <- sc03.seurat@ident | |
saveRDS(sc03, file=cache) | |
return(sc03) | |
} else { | |
return(readRDS(cache)) | |
} | |
} | |
runCluster <- function(sc03, sc01) { | |
scmapCluster_results <- scmapCluster(projection = sc03, | |
index_list = list(sc01=metadata(sc01)$scmap_cluster_index)) | |
plot(getSankey(colData(sc03)$cell_type1, scmapCluster_results$combined_labs)) | |
} | |
runCell <- function(sc03, sc01) { | |
scmapCell_results <- scmapCell(projection=sc03, | |
index_list=list(sc01=metadata(sc01)$scmap_cell_index)) | |
scmapCell_clusters <- scmapCell2Cluster(scmapCell_results, list(colData(sc01)$cell_type1)) | |
plot(getSankey(colData(sc03)$cell_type1, scmapCell_clusters$combined_labs)) | |
} | |
lung <- initLung() | |
sc01 <- initSC01(lung) | |
sc03s <- initSC03() | |
sc03 <- initSC03sce(sc03s) | |
runCluster(sc03, sc01) | |
runCell(sc03, sc01) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment