Last active
August 14, 2017 15:31
-
-
Save myles/5d0db95838aeecdcd0c57972f688be9e to your computer and use it in GitHub Desktop.
Quick Python script for splitting large CSV files using Pandas and NumPy.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import argparse | |
import math | |
import os.path | |
import pandas as pd | |
import numpy as np | |
def main(filepath): | |
if filepath.endswith('.csv'): | |
df_org = pd.read_csv(filepath) | |
elif filepath.endswith('.xlsx') or filepath.endswith('.xls'): | |
df_org = pd.read_excel(filepath) | |
else: | |
raise Exception("I don't know what the file is.") | |
row_count, column_count = df_org.shape | |
split_by = math.ceil(row_count / 5000) | |
dfs = np.array_split(df_org, split_by) | |
filename = os.path.basename(filepath).replace('.csv', '') | |
directory = os.path.dirname(filepath) | |
for index, df in enumerate(dfs): | |
df.to_csv(os.path.join(directory, | |
'{0}_{1}.csv'.format(filename, | |
index))) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('large_csv_file') | |
args = parser.parse_args() | |
main(args.large_csv_file) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment