Last active
August 26, 2025 22:27
-
-
Save myociss/668521e7b8e32ee3c5f46448491e880a to your computer and use it in GitHub Desktop.
Lightning Flash Clustering: plot grid statistics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import cartopy.crs as ccrs | |
| import cartopy.feature as cfeature | |
| import matplotlib.pyplot as plt | |
| import matplotlib.patheffects as pe | |
| import datetime | |
| all_flash_areas = {} | |
| all_flash_hours = {} | |
| for fname in os.listdir(json_dir): | |
| with open(os.path.join(json_dir, fname), 'r') as f: | |
| data = json.load(f) | |
| flashes = data['flash_params'] | |
| for flash in flashes: | |
| for grid_point in flash['grid_points']: | |
| if tuple(grid_point) not in all_flash_areas: | |
| all_flash_areas[tuple(grid_point)] = [] | |
| all_flash_areas[tuple(grid_point)].append(flash['hull_area']) | |
| if tuple(grid_point) not in all_flash_hours: | |
| all_flash_hours[tuple(grid_point)] = [] | |
| dt = datetime.datetime.strptime(flash['init_time'], "%m/%d/%y %H:%M:%S") | |
| all_flash_hours[tuple(grid_point)].append(dt.strftime("%m/%d/%y %H")) | |
| area_grid = np.zeros((grid_size, grid_size)) | |
| lh_grid = np.zeros((grid_size, grid_size)) | |
| fph_grid = np.zeros((grid_size, grid_size)) | |
| for k, v in all_flash_areas.items(): | |
| flashes_sorted = sorted(v) | |
| median = flashes_sorted[len(flashes_sorted) // 2] | |
| area_grid[k[0],k[1]] = median | |
| for k, v in all_flash_hours.items(): | |
| n_hours = len(list(set(v))) | |
| lh_grid[k[0],k[1]] = n_hours | |
| cntr = Counter(v) | |
| fph_grid[k[0],k[1]] = np.mean(np.array(list(cntr.values()))) | |
| grids = (area_grid, lh_grid, fph_grid) | |
| fig, axs = plt.subplots(1, 3, figsize=(9, 3), subplot_kw={'projection': ccrs.PlateCarree()}) | |
| for param_idx, param in enumerate(('flash_area', 'lightning_hours', 'flashes_per_lightning_hour')): | |
| grid = grids[param_idx] | |
| vmax = 100.0 if param == 'flash_area' else np.max(grid) | |
| axs[param_idx].add_feature(cfeature.STATES, linewidth=1.4, edgecolor='white') | |
| plot_extent = [*grid_longitude_range, *grid_latitude_range] | |
| axs[param_idx].set_extent(plot_extent,crs=ccrs.PlateCarree()) | |
| axs[param_idx].imshow(grid, origin='upper', cmap='jet', extent=plot_extent, vmax=vmax, transform=ccrs.PlateCarree()) | |
| for landmark_idx in range(len(landmark_names)): | |
| landmark_coords = landmark_coordinates[landmark_idx] | |
| axs[param_idx].plot(landmark_coords[1], landmark_coords[0], 'wo', markersize=7, transform=ccrs.PlateCarree()) | |
| axs[param_idx].text(landmark_coords[1]-0.001, landmark_coords[0]+0.2, landmark_names[landmark_idx], color='black', size=14, path_effects=[pe.withStroke(linewidth=2, foreground="white")], transform=ccrs.PlateCarree()) | |
| axs[param_idx].set_title(param) | |
| plt.savefig(os.path.join(plot_dir, 'grid_stats.png')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment