I hereby claim:
- I am mys721tx on github.
- I am mys_721tx (https://keybase.io/mys_721tx) on keybase.
- I have a public key whose fingerprint is 3A45 375D 6460 9CA3 4B64 C5F3 81C8 4F22 EE52 6950
To claim this, I am signing this object:
desc: (none) | |
cmd: ./vsearch --derep_fulllength test-identical.fasta --sizein --sizeout --output test-identical.fasta.derep.fasta | |
time_unit: i | |
#----------- | |
snapshot=0 | |
#----------- | |
time=0 | |
mem_heap_B=0 | |
mem_heap_extra_B=0 | |
mem_stacks_B=0 |
package main | |
import ( | |
"bufio" | |
"math/rand" | |
"os" | |
"github.com/biogo/biogo/alphabet" | |
"github.com/biogo/biogo/io/seqio/fasta" | |
"github.com/biogo/biogo/seq/linear" |
make all-recursive | |
make[1]: Entering directory '/home/mys_721tx/vsearch' | |
Making all in src | |
make[2]: Entering directory '/home/mys_721tx/vsearch/src' | |
g++ -DHAVE_CONFIG_H -I. -I.. -Wall -Wsign-compare -O3 -g -msse2 -g -march=native -MT libcpu_sse2_a-cpu.o -MD -MP -MF .deps/libcpu_sse2_a-cpu.Tpo -c -o libcpu_sse2_a-cpu.o `test -f 'cpu.cc' || echo './'`cpu.cc | |
mv -f .deps/libcpu_sse2_a-cpu.Tpo .deps/libcpu_sse2_a-cpu.Po | |
rm -f libcpu_sse2.a | |
ar cru libcpu_sse2.a libcpu_sse2_a-cpu.o | |
ar: `u' modifier ignored since `D' is the default (see `U') | |
ranlib libcpu_sse2.a |
desc: (none) | |
cmd: ./vsearch --derep_fulllength all.fasta --sizein --sizeout --output all.derep.test.fasta | |
time_unit: i | |
#----------- | |
snapshot=0 | |
#----------- | |
time=0 | |
mem_heap_B=0 | |
mem_heap_extra_B=0 | |
mem_stacks_B=0 |
""" | |
sum.py | |
""" | |
import sys | |
size = 0 | |
def parse(line): | |
if line[0] == ">": |
diff --git a/PKGBUILD b/PKGBUILD | |
index 7ab045a..42fe6d6 100644 | |
--- a/PKGBUILD | |
+++ b/PKGBUILD | |
@@ -1,28 +1,45 @@ | |
# Maintainer: Ainola | |
-pkgname=python2-google-auth-httplib2-git | |
+pkgbase=python-google-auth-httplib2-git | |
+pkgname=python-google-auth-httplib2-git |
""" | |
get_follower.py | |
""" | |
import twitter #python-twitter | |
auth = { | |
"consumer_key": "", | |
"consumer_secret": "", | |
"access_token_key": "", |
I hereby claim:
To claim this, I am signing this object:
The problem can be solved using discrete Fourier transform (DFT).
Rewriting the problem as a matrix equation Cx = b
, we noticed that the
coefficient matrix C
is a circulant square matrix. The equation can then be
rewriten as the circular convolution of c
and x
.
By circular convolution theorem, the point-wise product of the DFT of c
and
that of x
is the DFT of b
. We can compute x
from the point-wise quotient.
(Wikipedia)
The problem can be solved by using a stack.
The running time of this algorithm is bounded by the stack operations. We can
achieve O(n)
.