Skip to content

Instantly share code, notes, and snippets.

@myungsub
Last active November 26, 2015 05:55
Show Gist options
  • Save myungsub/ae7776c1dd60c34c4c6b to your computer and use it in GitHub Desktop.
Save myungsub/ae7776c1dd60c34c4c6b to your computer and use it in GitHub Desktop.
stuffs to look at
  1. Expressing an Image Stream with a Sequence of Natural Sentences
  • Cesc Park, Seoul National University; Gunhee Kim*, Seoul National University
  1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [Paper]
  • Shaoqing Ren, USTC; Kaiming He*, Microsoft Research Asia; Ross Girshick, Microsoft Research; Jian Sun, Microsoft Research Asia
  1. Space-Time Local Embeddings
  • Ke SUN*, University of Geneva; Jun Wang, Expedia, Geneva; Alexandros Kalousis, ; Stephane Marchand-Maillet, University of Geneva
  1. Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning
  • Jiajun Wu*, MIT; Ilker Yildirim, MIT; William Freeman, MIT; Josh Tenenbaum, MIT
  1. Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets [Paper]
  • Armand Joulin*, Facebook AI research; Tomas Mikolov, Facebook AI Research
  1. Where are they looking?
  • Adria Recasens*, MIT; Aditya Khosla, MIT; Carl Vondrick, MIT; Antonio Torralba, MIT
  1. Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution
  • Yan Huang*, CRIPAC, CASIA; Wei Wang, NLPR,CASIA; Liang Wang,
  1. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks [Paper]
  • Leon Gatys*, University of Tübingen; Alexander Ecker, University of Tuebingen; Matthias Bethge, CIN, University Tübingen
  1. Learning visual biases from human imagination [Project Page] [Prev Paper]
  • Carl Vondrick*, MIT; Hamed Pirsiavash, MIT; Aude Oliva, MIT; Antonio Torralba, MIT
  1. Deeply Learning the Messages in Message Passing Inference [Paper]
  • Guosheng Lin*, The University of Adelaide; Chunhua Shen, ; Ian Reid, University of Adelaide; Anton Van Den Hengel, University of Adelaide
  1. 3D Object Proposals for Accurate Object Class Detection
  • Xiaozhi Chen, Tsinghua University; Kaustav Kundu, University of Toronto; Yukun Zhu, University of Toronto; Andrew Berneshawi, University of Toronto; Huimin Ma, Tsinghua University; Sanja Fidler, University of Toronto; Raquel Urtasun*, University of Toronto
  1. Deep Knowledge Tracing [Paper]
  • Chris Piech*, Stanford; Jonathan Bassen, stanford.edu; Jonathan Huang, google.com; Surya Ganguli, stanford.edu; Mehran Sahami, stanford.edu; Leonidas Guibas, stanford.edu; Jascha Sohl-Dickstein, stanford.edu
  1. Learning Theory and Algorithms for Forecasting Non-stationary Time Series
  • Vitaly Kuznetsov*, Courant Institute; Mehryar Mohri, Courant Institute and Google
  1. Attention-Based Models for Speech Recognition [Paper]
  • Jan Chorowski*, University of Wroclaw; Dzmitry Bahdanau, Jacobs University, Germany; Dmitriy Serdyuk, Université de Montréal; Kyunghyun Cho, NYU; Yoshua Bengio, U. Montreal
  1. Character-level Convolutional Networks for Text Classification [Paper]
  • Xiang Zhang*, New York University; Junbo Zhao, New York University; Yann LeCun, New York University
  1. Deep learning with Elastic Averaging SGD [Paper]
  • Sixin Zhang*, New York University; Anna Choromanska, Courant Institute, NYU; Yann LeCun, New York University
  1. Online Learning for Adversaries with Memory: Price of Past Mistakes
  • Oren Anava*, Technion; Elad Hazan, Princeton University; Shie Mannor, Technion
  1. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting [Paper]
  • Xingjian Shi*, HKUST; Zhourong Chen, The Hong Kong University of Science and Technology; Hao Wang, HKUST; Dit Yan Yeung, HKUST; Wai-kin Wong, ; Wang-chun WOO,
  1. Bidirectional Recurrent Neural Networks as Generative Models [Paper]
  • Mathias Berglund*, Aalto University; Tapani Raiko, Aalto University; Mikko Honkala, Nokia Labs; Leo Kärkkäinen, Nokia Labs; Akos Vetek, Nokia Labs; Juha Karhunen, Aalto University
  1. Hessian-Free Optimization For Learning Deep Multidimensional Recurrent Neural Networks
  • Minhyung Cho*, Gracenote; Jaehyung Lee, Gracenote; Chandra Dhir, Gracenote
  1. Convolutional Neural Networks with Intra-Layer Recurrent Connections for Scene Labeling
  • Ming Liang, Tsinghua University; Xiaolin Hu*, Tsinghua University; Bo Zhang, Tsinghua University
  1. Unsupervised Learning by Program Synthesis
  • Kevin Ellis*, MIT; Josh Tenenbaum, MIT; Armando Solar-Lezama, MIT
  1. Human Memory Search as Initial-Visit Emitting Random Walk
  • Kwang-Sung Jun*, University of Wisconsin-Madiso; Xiaojin Zhu, University of Wisconsin-Madison; Timothy Rogers, University of Wisconsin-Madison; Zhuoran Yang, Tsinghua University; ming yuan, University of Wisconsin - Madison
  1. Learning to Rotate 3D Objects with Recurrent Convolutional Encoder-Decoder Networks
  • Jimei Yang*, UC Merced; Scott Reed, University of Michigan; Ming-Hsuan Yang, UC Merced; Honglak Lee, U. Michigan
  1. Efficient Exact Gradient Update for training Deep Networks with Very Large Sparse Targets [Paper]
  • Pascal Vincent*, U. Montreal; Alexandre de Brébisson, Université de Montréal; Xavier Bouthillier, Universit de Montréal
  1. Backpropagation for Energy-Efficient Neuromorphic Computing
  • Steve Esser*, IBM Research-Almaden; Rathinakumar Appuswamy, IBM Research-Almaden; Paul Merolla, IBM Research-Almaden; John Arthur, IBM Research-Almaden; Dharmendra Modha, IBM Research-Almaden
  1. Learning both Weights and Connections for Efficient Neural Network [Paper]
  • Song Han*, Stanford University; Jeff Pool, ; John Tran, ; Bill Dally , Stanford University
  1. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks [Paper]
  • Samy Bengio*, Google Research; Oriol Vinyals, Google; Navdeep Jaitly, Google; Noam Shazeer, Google
  1. Learning to Linearize Under Uncertainty [Paper]
  • Ross Goroshin*, New York University; Michael Mathieu, New York University; Yann LeCun, New York University
  1. Deep Visual Analogy-Making
  • Scott Reed*, University of Michigan; Yi Zhang, University of Michigan; Yuting Zhang, University of Michigan; Honglak Lee, U. Michigan
  1. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks [Paper]
  • Emily Denton*, New York University; Rob Fergus, Facebook AI Research; Arthur Szlam, Facebook; Soumith Chintala, Facebook AI Research
  1. Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation [Paper]
  • Seunghoon Hong*, POSTECH; Hyeonwoo Noh, POSTECH; Bohyung Han, Postech
  1. Teaching Machines to Read and Comprehend [Paper]
  • Karl Moritz Hermann*, Google DeepMind; Tomas Kocisky, Oxford University; Edward Grefenstette, Google DeepMind; Lasse Espeholt, Google DeepMind; Will Kay, Google DeepMind; Mustafa Suleyman, Google DeepMind; Phil Blunsom, Google DeepMind
  1. Max-Margin Deep Generative Models [Paper]
  • Chongxuan Li*, Tsinghua University; Jun Zhu, Tsinghua University; Tianlin Shi, Tsinghua University; Bo Zhang, Tsinghua University
  1. Visalogy: Answering Visual Analogy Questions
  • Fereshteh Sadeghi*, University of Washington; Ross Girshick, Microsoft Research; Larry Zitnick, Microsoft Research; Ali Farhadi, University of Washington
  1. Generative Image Modeling Using Spatial LSTMs [Paper]
  • Lucas Theis*, U.Tuebingen; Matthias Bethge, CIN, University Tübingen
  1. Learning to Segment Object Candidates [Paper]
  • Pedro Pinheiro*, EPFL; Ronan Collobert, Facebook; Piotr Dollar, Facebook AI Research
  1. Spatial Transformer Networks [Paper]
  • Max Jaderberg*, Google; Karen Simonyan, Google DeepMind; Andrew Zisserman, Google; Koray Kavukcuoglu, Google DeepMind
  1. Natural Neural Networks [Paper]
  • Guillaume Desjardins*, Google DeepMind; Karen Simonyan, Google DeepMind; Razvan Pascanu, Google DeepMind; Koray Kavukcuoglu, Google DeepMind
  1. Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction
  • Been Kim, MIT; Julie Shah, MIT; Finale Doshi-Velez*, Harvard
  1. Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question [Paper]
  • Haoyuan Gao, Baidu; Junhua Mao, UCLA; Jie Zhou, Baidu; Zhiheng Huang, Baidu; Lei Wang, Baidu; Wei Xu*, Baidu
  1. Training Very Deep Networks [Paper]
  • Rupesh Srivastava*, IDSIA; Klaus Greff, IDSIA; J?rgen Schmidhuber,
  1. End-To-End Memory Networks [Paper]
  • Sainbayar Sukhbaatar*, New York University; Arthur Szlam, Facebook; Jason Weston, Facebook AI Research; Rob Fergus, Facebook AI Research
  1. Spectral Representations for Convolutional Neural Networks [Paper]
  • Oren Rippel*, MIT; Jasper Snoek, Harvard; Ryan Adams, Harvard
  1. Deep Temporal Sigmoid Belief Networks for Sequence Modeling
  • Zhe Gan*, Duke University; Chunyuan Li, Duke University; Ricardo Henao, Duke University; David Carlson, ; Lawrence Carin, Duke University
  1. Deep Convolutional Inverse Graphics Network [Paper]
  • Pushmeet Kohli, Microsoft Research; Will Whitney, MIT; Tejas Kulkarni*, MIT; Josh Tenenbaum, MIT
  1. Learning Wake-Sleep Recurrent Attention Models
  • Jimmy Ba*, University of Toronto; Ruslan Salakhutdinov, University of Toronto; Roger Grosse, University of Toronto; Brendan Frey, U. Toronto
  1. Super-Resolution Off the Grid
  • Qingqing Huang, MIT; Sham Kakade*, University of Washington
  1. The Return of the Gating Network: combining generative models and discriminative training in natural image priors.
  • Dan Rosenbaum*, The Hebrew University; Yair Weiss, Hebrew University
  1. Pointer Networks [Paper]
  • Oriol Vinyals*, Google; Meire Fortunato, ; Navdeep Jaitly, Google
  1. Grammar as a Foreign Language [Paper]
  • Oriol Vinyals*, Google; Lukasz Kaiser, Google; Terry Koo, Google; Slav Petrov, Google; Ilya Sutskever, Google; Geoffrey Hinton, Google
  1. The Human Kernel
  • Andrew Wilson*, Carnegie Mellon University; Christoph Dann, CMU; Chris Lucas, University of Edinburgh; Eric Xing, Carnegie Mellon University
  1. Exploring Models and Data for Image Question Answering [Paper]
  • Mengye Ren*, University of Toronto; Ryan Kiros, U. Toronto; Richard Zemel, University of Toronto
  1. A Recurrent Latent Variable Model for Sequential Data [Paper]
  • Junyoung Chung*, University of Montreal; Kyle Kastner, Universite de Montreal; Viet Hanh Laurent Dinh, University of Montreal; Kratarth Goel, University of Montreal; Aaron Courville, U. Montreal; Yoshua Bengio, U. Montreal
  1. Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation [Paper]
  • Marijn Stollenga*, IDSIA; Wonmin Byeon, TU Kaiserslautern; Marcus Liwicki, TU Kaiserslautern; J?rgen Schmidhuber,
  1. Unsupervised Sequence Learning
  • Andrew Dai*, Google Inc; Quoc Le, Google
  1. Data Generation as Sequential Decision Making [Paper]
  • Philip Bachman*, McGill University; Doina Precup, University of McGill
  1. Skip-Thought Vectors [Paper]
  • Ryan Kiros*, U. Toronto; Yukun Zhu, University of Toronto; Ruslan Salakhutdinov, University of Toronto; Richard Zemel, University of Toronto; Raquel Urtasun, University of Toronto; Antonio Torralba, MIT; Sanja Fidler, University of Toronto
  1. Bayesian dark knowledge [Paper]
  • Anoop Korattikara*, Google; Vivek Rathod, Google; Kevin Murphy, Google; Max Welling,
  1. Learning Structured Output Representation using Deep Conditional Generative Models
  • Kihyuk Sohn*, University of Michigan; Honglak Lee, U. Michigan; Xinchen Yan, UMich
  1. Semi-supervised Learning with Ladder Network [Paper]
  • Antti Rasmus*, Aalto University; Mathias Berglund, Aalto University; Mikko Honkala, Nokia Labs; Harri Valpola, ZenRobotics; Tapani Raiko, Aalto University
  1. Recursive 2D-3D Convolutional Networks for Neuronal Boundary Prediction [Paper]
  • Kisuk Lee*, MIT; Aleksandar Zlateski, MIT; Vishwanathan Ashwin, Princeton University; H. Sebastian Seung, Princeton University
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment