Created
          October 12, 2014 11:51 
        
      - 
      
- 
        Save myuon/68519260c46178265051 to your computer and use it in GitHub Desktop. 
    no good
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | module Set-Syntax where | |
| Σ-syntax′ : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b) | |
| Σ-syntax′ = Σ | |
| syntax Σ-syntax′ A (\x → B) = [ x ∈ A ∣ B ] | |
| Σ-type : ∀{a b} → Set a → Set b → Set _ | |
| Σ-type A B = Σ A (\_ → B) | |
| syntax Σ-type A P = P ⊆ A | |
| -- ∅ : {A : Set} → A → Set | |
| -- ∅ = \_ → ⊥ | |
| -- U₀ : {A : Set} → A → Set | |
| -- U₀ = \_ → ⊤ | |
| ¬ : Set → Set | |
| ¬ P = P → ⊥ | |
| singleton : {A : Set} → (x : A) → Set | |
| singleton {A = A} x = [ y ∈ A ∣ y ≡ x ] | |
| isSingleton : (A : Set) → Set | |
| isSingleton A = [ y ∈ A ∣ (∀(x : A) → x ≡ y) ] | |
| singleton-isSingleton : {A : Set} (x : A) → isSingleton (singleton x) | |
| singleton-isSingleton x = ((x , refl) , \{(.x , refl) → refl}) | |
| In : Set → Set → Set | |
| In A z = isSingleton z × z ⊆ A | |
| syntax In A z = z ∈ A | |
| NotIn : Set → Set → Set | |
| NotIn A z = ¬ (z ∈ A) | |
| syntax NotIn A z = z ∉ A | |
| open Set-Syntax public | |
| singleton-⊆ : (A : Set) → (x : A) → singleton x ⊆ A | |
| singleton-⊆ A x = x , (x , refl) | |
| elem-∈ : (A : Set) → (x : A) → singleton x ∈ A | |
| elem-∈ A x = x , (singleton-isSingleton x , (x , refl)) | |
| --∅-⊆ : (A : Set) → ⊥ ⊆ A | |
| --∅-⊆ A = {!!} , {!!} | |
| infix 3 _⇔_ | |
| _⇔_ : (A B : Set) → Set | |
| A ⇔ B = A → B × B → A | |
| _∩_ : (A B : Set) → Set₁ | |
| A ∩ B = ∃ \x → (x ∈ A) × (x ∈ B) | |
| module Axioms where | |
| -- AxiomOfExtensionality : Set₁ | |
| AxiomOfChoice : Set₁ | |
| AxiomOfChoice = {A B : Set} {R : A → B → Set} | |
| → (∀ (a : A) → ∃ (\(b : B) → R a b)) | |
| → (∃ \(f : A → B) → ∀ (a : A) → R a (f a)) | |
| ac : AxiomOfChoice | |
| ac h = proj₁ ∘ h , proj₂ ∘ h | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment