Created
          July 21, 2015 13:44 
        
      - 
      
- 
        Save myuon/c607a88413951a69fabe to your computer and use it in GitHub Desktop. 
    Near Sermiring and MonadPlus
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | {-# LANGUAGE Rank2Types, ScopedTypeVariables #-} | |
| import Prelude hiding ((<*>), abs) | |
| import qualified Control.Applicative as A | |
| import Control.Monad | |
| import Test.QuickCheck | |
| class NearSemiring m where | |
| (<+>) :: m a -> m a -> m a | |
| zero :: m a | |
| (<*>) :: m a -> m a -> m a | |
| one :: m a | |
| newtype S m a = S { unS :: a -> m a } | |
| instance MonadPlus m => NearSemiring (S m) where | |
| (S ma) <+> (S mb) = S $ \x -> ma x `mplus` mb x | |
| zero = S $ const mzero | |
| (S m) <*> (S k) = S $ \x -> m x >>= k | |
| one = S return | |
| -- | |
| newtype Ran f g x = Ran { unRan :: forall y. (x -> f y) -> g y } | |
| newtype Exp f g x = Exp { unExp :: forall y. (x -> y) -> (f y -> g y) } | |
| newtype DC f x = DC { unDC :: Ran (Exp f f) (Exp f f) x } | |
| instance Functor (DC f) where | |
| fmap = undefined | |
| instance Applicative (DC f) where | |
| pure = undefined | |
| (<*>) = undefined | |
| instance A.Alternative (DC f) where | |
| empty = undefined | |
| (<|>) = undefined | |
| instance Monad (DC f) where | |
| return x = DC $ Ran $ \f -> f x | |
| DC (Ran m) >>= f = DC $ Ran $ \g -> m (\a -> unRan (unDC $ f a) g) | |
| instance MonadPlus (DC f) where | |
| mzero = DC $ Ran $ \k -> Exp $ \c x -> x | |
| mplus (DC (Ran a)) (DC (Ran b)) = DC $ Ran $ \sk -> Exp $ \f fk -> unExp (a sk) f $ unExp (b sk) f fk | |
| rep :: Monad m => m a -> DC m a | |
| rep x = DC $ Ran $ \g -> Exp $ \h m -> x >>= \a -> unExp (g a) h m | |
| abs :: MonadPlus m => DC m a -> m a | |
| abs (DC (Ran f)) = unExp (f $ \x -> Exp $ \h m -> return (h x) `mplus` m) id mzero | |
| main = do | |
| let toS = S . const | |
| quickCheck $ label "assocPlus" $ \(a :: [Int]) b c n -> | |
| unS (toS a <+> (toS b <+> toS c)) n === unS ((toS a <+> toS b) <+> toS c) n | |
| quickCheck $ label "assocMult" $ \(a :: [Int]) b c n -> | |
| unS (toS a <*> (toS b <*> toS c)) n === unS ((toS a <*> toS b) <*> toS c) n | |
| quickCheck $ label "zeroLeft" $ \(a :: [Int]) n -> | |
| unS (zero <+> toS a) n === unS (toS a) n | |
| quickCheck $ label "zeroRight" $ \(a :: [Int]) n -> | |
| unS (toS a <+> zero) n === unS (toS a) n | |
| quickCheck $ label "distribLeft" $ \(a :: [Int]) b c n -> | |
| unS ((toS a <+> toS b) <*> toS c) n === unS ((toS a <*> toS c) <+> (toS b <*> toS c)) n | |
| quickCheck $ label "distribRight" $ \(a :: [Int]) b c n -> | |
| unS (toS a <*> (toS b <+> toS c)) n === unS ((toS a <*> toS b) <+> (toS a <*> toS c)) n | |
| let toD = toS . rep | |
| let unD f x = abs $ unS f x | |
| quickCheck $ label "assocPlus" $ \(a :: [Int]) b c n -> | |
| unD (toD a <+> (toD b <+> toD c)) n === unD ((toD a <+> toD b) <+> toD c) n | |
| quickCheck $ label "assocMult" $ \(a :: [Int]) b c n -> | |
| unD (toD a <*> (toD b <*> toD c)) n === unD ((toD a <*> toD b) <*> toD c) n | |
| quickCheck $ label "zeroLeft" $ \(a :: [Int]) n -> | |
| unD (zero <+> toD a) n === unD (toD a) n | |
| quickCheck $ label "zeroRight" $ \(a :: [Int]) n -> | |
| unD (toD a <+> zero) n === unD (toD a) n | |
| quickCheck $ label "distribLeft" $ \(a :: [Int]) b c n -> | |
| unD ((toD a <+> toD b) <*> toD c) n === unD ((toD a <*> toD c) <+> (toD b <*> toD c)) n | |
| quickCheck $ label "distribRight" $ \(a :: [Int]) b c n -> | |
| unD (toD a <*> (toD b <+> toD c)) n === unD ((toD a <*> toD b) <+> (toD a <*> toD c)) n | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment